MATH 210: Construction of the Reals Homework

- 1. Let C^{∞} be the set of all continuous functions on the interval [0,1]. Show that $d(f,g) = \int_0^1 |f(x) g(x)| dx$ is a metric on C^{∞} .
- 2. Give two other elements (as Cauchy sequences) of the equivalence class $\{1, \frac{1}{10}, \frac{1}{100}, \frac{1}{1000}, \dots\}/=_C$.
- 3. Give the element of \mathbb{R} (in standard notation) that corresponds to

$$\left\{1, 1 + \frac{1}{1}, 1 + \frac{1}{1 + \frac{1}{1}}, 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}, \dots\right\} / =_C$$

- 4. A sequence $\{x_n\}$ is said to be **eventually bounded by** M iff there exists N such that for every n > N we have $|x_n| < M$. Prove that if $\{x_n\}$ is a Cauchy sequence then it is eventually bounded. (Hint: Since the sequence is Cauchy, it has a limit, call it L. Then use the limit definition of $x_n \to L$ to show that there exists N such that for n > N we have $L 1 < x_n < L + 1$. Now find the appropriate bound on $|x_n|$.)
- 5. Suppose $\{r_n\} =_C \{s_n\}$ and $\{t_n\} =_C \{u_n\}$. Show that
 - (a) $\{r_n + t_n\} =_C \{s_n + u_n\}$
 - (b) $\{r_n t_n\} =_C \{s_n u_n\}$ (Hint: use $0 = -s_n t_n + s_n t_n$ and Problem 4.)
- 6. Consider the sequence of rationals $\{1,4,16,\ldots,4^n,\ldots\}$ and the metric on $\mathbb Q$ given by

$$d_2(x,y) = 2^{(\# \text{ of 2's in the denominator of } x-y) - (\# \text{ of 2's in the numerator of } x-y)}$$
.

- (a) Prove that this sequence is Cauchy under the metric $d_2(x,y)$.
- (b) Show that this sequence has limit L=0 under the metric $d_2(x,y)$.