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Introduction
°

Primes!

@ Definition: A prime is a positive whole number that cannot
be divided evenly by anything except 1 and itself.
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@ Definition: A prime is a positive whole number that cannot
be divided evenly by anything except 1 and itself.

2,3,5, 7, 11, 13, ...
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be divided evenly by anything except 1 and itself.
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o Awesome Property: Every rational number can be written
as a product of primes to a power.
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Introduction
°

Primes!

@ Definition: A prime is a positive whole number that cannot
be divided evenly by anything except 1 and itself.

ZINC G R S [ R 2

o Awesome Property: Every rational number can be written
as a product of primes to a power.

@ 662415793599696251 = 239 - 57301 - 94873 - 509833
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Introduction
°

Primes!

@ Definition: A prime is a positive whole number that cannot
be divided evenly by anything except 1 and itself.

ZINC G R S [ R 2

o Awesome Property: Every rational number can be written
as a product of primes to a power.

@ 662415793599696251 = 239 - 57301 - 94873 - 509833

o 27008742384
27680640625
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Factorizations
©00

Factorizations of Consectutive Numbers

2 = 2
3 = 3
4 = 22
5 = 5
6 = 2.3
7 =
g = 23
9 = 32
10 = 2-5
11 = 11
12 = 22.3
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Factorizations
©00

Factorizations of Consectutive Numbers

2 = 2.11
23 = 23
24 = 23.3
25 = 52
26 = 2-23
27 = 33
28 = 22.7
29 = 29
30 = 2-3-5
31 = 31
32 = 2°
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Factorizations
©00

Factorizations of Consectutive Numbers

122 = 2.61
123 = 3.41
124 = 22.31
125 = 53

126 = 2.3%.7
127 = 127
128 = 27

129 = 3.43
130 = 2-513
131 = 131

132 = 22.3.11
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Factorizations
©00

Factorizations of Consectutive Numbers

55122 = 2-3.9187

55123 = 199.277
55124 = 22.13781
55125 = 32.5%.72
55126 = 2-43-641

55127 = 55127
55128 = 23.3.2297
55120 = 29-1901
55130 = 2-5-37-149
55131 = 3.17-23-47
55132 = 22.7.11-179
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Factorizations
©00

Factorizations of Consectutive Numbers

7796955122 = 2.11 354407051

7796955123 = 32.17-50960491
7796955124 = 22.7.12527 22229
7796955125 = 53.62375641
7796955126 = 2-3-1299492521

7796955127 = 13-23-3929 6637
7796955128 = 23.523.1863517
7796955129 = 33770242839
7796955130 = 2-5-2777-280769
7796955131 = 7-229-1487-3271
7796955132 = 22.33.2503 28843
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Factorizations
oeo

Things We Notice

@ a and a+ 1 have wildly different factorizations
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Factorizations
oeo

Things We Notice

@ a and a+ 1 have wildly different factorizations

@ As a gets really big, the factorizations become mostly " large”
primes (like 2503) to a small power (like 1). (Demo)
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Factorizations
oeo

Things We Notice

@ a and a+ 1 have wildly different factorizations

@ As a gets really big, the factorizations become mostly " large’
primes (like 2503) to a small power (like 1). (Demo)

@ Some rare gems are still “small” primes to a “large” power,
e.g. 55125 = 32.5%. 72 and 55962140625 = 36 . 5° . 173.
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Factorizations
oeo

Things We Notice

@ a and a+ 1 have wildly different factorizations

@ As a gets really big, the factorizations become mostly " large’
primes (like 2503) to a small power (like 1). (Demo)

@ Some rare gems are still “small” primes to a “large” power,
e.g. 55125 = 32.5%. 72 and 55962140625 = 36 . 5° . 173.

@ We call these numbers smooth.
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Factorizations
ooe

Relationships of Prime Factorizations

@ If | know the prime factorization of a and b, then it's easy to
find the prime factorization of ab.
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Factorizations

[e]e] J

Relationships of Prime Factorizations

@ If | know the prime factorization of a and b, then it's easy to
find the prime factorization of ab.

160000 . _ 8 22 _ g4 _ 2.6
iossgar — 2 — 2 3 5 7

14235529 __ _ -3 —1 6 2

14235529 _ p = 2 3 7 11

2420000 __
=== =ab

Eric Errthum Learning Your ABC



Factorizations

[e]e] J

Relationships of Prime Factorizations

@ If | know the prime factorization of a and b, then it's easy to
find the prime factorization of ab.

1106508080491:3 — 28 . 372 X 54 X 776 . 110
14232529:b — 2—3 3—1 50 76 112

2420000 __
=== =ab
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Factorizations

[e]e] J

Relationships of Prime Factorizations

@ If | know the prime factorization of a and b, then it's easy to
find the prime factorization of ab.

1106508080491 —3 = 28 . 372 X 54 X 776 . 110
14232529 —p = 2—3 . 3—1 . 50 . 76 . 112
242207000 —ab = 25 . 373 . g4 . 70 . 112
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Factorizations

[e]e] J

Relationships of Prime Factorizations

@ If | know the prime factorization of a and b, then it's easy to
find the prime factorization of ab.

1106508080491 —3 = 28 . 372 X 54 X 776 . 110
14232529 —p = 2—3 . 3—1 . 50 . 76 . 112
242207000 —ab = 25 . 373 A 54 . 112

Eric Errthum Learning Your ABC



Factorizations

[e]e] J

Relationships of Prime Factorizations

@ If | know the prime factorization of a and b, then it's easy to
find the prime factorization of ab.

1106508080491 —3 = 28 . 372 X 54 X 776 . 110
14232529 —p = 2—3 3—1 50 76 112
242207000 —ab = 25 . 373 A 54 . 112

@ But what about a + b?
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Factorizations
ooe

Relationships of Prime Factorizations

@ If | know the prime factorization of a and b, then it's easy to
find the prime factorization of ab.

1106508080491 —3 = 28 . 372 X 54 X 776 . 110
14232529 —p = 2—3 3—1 50 76 112
242207000 —ab = 25 373 54 112

@ But what about a + b?

a+b=23.372.776.40949 .122698687
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ABC Triples

@ (smooth)*(smooth) = smooth
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ABC Triples

@ (smooth)*(smooth) = smooth
@ (smooth)-+(smooth) = probably not smooth
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ABC Triples

@ (smooth)*(smooth) = smooth
@ (smooth)-+(smooth) = probably not smooth
BUT SOMETIMES IT IS!
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ABC Triples

@ (smooth)*(smooth) = smooth
@ (smooth)-+(smooth) = probably not smooth
BUT SOMETIMES IT IS!

17%41%47% 4+ 210335%7 —  11%23*

3117419%423% + 21056116175 —  132672109%139%157°163

2+310109 = 23°
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ABC Triples

@ (smooth)*(smooth) = smooth
@ (smooth)-+(smooth) = probably not smooth
BUT SOMETIMES IT IS!

17%41%47% 4+ 210335%7 —  11%23*
2172412472 4 21033507 —
3117419%23% + 21056116175 —  132672109%139%157°163

2+310109 = 23°

4
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ABC Triples

@ (smooth)*(smooth) = smooth
@ (smooth)-+(smooth) = probably not smooth
BUT SOMETIMES IT IS!

172412472 4+ 21033507 = 11%23%
2.17%41%47% 4+ 21033557 — 2.353.7323377
31174194234 4+ 21050110170 = 132672109%139°157°163

2+310109 = 23°

4
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ABC Triples

@ (smooth)*(smooth) = smooth
@ (smooth)-+(smooth) = probably not smooth
BUT SOMETIMES IT IS!

172412472 4+ 21033507 = 11%23%
2.17%41247% + 219335%7 = 2.353.7323377
3117410%23% 4 2105011017 = 132672109213921572163
3127419423% 1 21056116176 —

2+3%1090 = 23°

4
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ABC Triples

(smooth)*(smooth) = smooth

°
@ (smooth)-+(smooth) = probably not smooth
BUT SOMETIMES IT IS!

172412472 + 21033567
2.17°412472 4 21933507
31174194234 4 21050716170
3127419%23% 4 2105671167176

= 11%23%

= 2.353.7323377

= 13267%109%1392157°163
37 - 19749002441821462573

2+3%100 = 23°

4
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ABC Triples

(smooth)*(smooth) = smooth

(smooth)+(smooth) = probably not smooth
BUT SOMETIMES IT IS!

172412472 4+ 21033507 = 11%23%
2.17%41%47% + 21933557 = 2.353.7323377
3117419%23% 4+ 2105011617 = 132672109%139°157°163
3127410%23% 4+ 21056116176 — 37.19749002441821462573
2+3%0109 = 23°
5.2 4+ 5-310109

4
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ABC Triples

(smooth)*(smooth) = smooth

(smooth)+(smooth) = probably not smooth
BUT SOMETIMES IT IS!

172412472 4+ 21033507 = 11%23%
2.17%41%47% + 21933557 = 2.353.7323377
3117419%23% 4+ 2105011617 = 132672109%139°157°163
3127410%23% 4+ 21056116176 — 37.19749002441821462573
2+3%0109 = 23°
5245319109 = 5.23°

4
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ABC Triples

(smooth)*(smooth) = smooth

(smooth)+(smooth) = probably not smooth
BUT SOMETIMES IT IS!

172412472 + 21033567 = 11%23%

2.17%41247% + 219335%7 = 2.353.7323377
3117410%23% 4 2105011017 = 132672109213921572163
3127410423*% 1+ 21056116175 = 37.19749002441821462573
2+3%100 = 23°

524531109 = 5.23% Cheating!

4
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ABC Triples

@ (smooth)*(smooth) = smooth
@ (smooth)-+(smooth) = probably not smooth
BUT SOMETIMES IT IS!

17%41%47% 4+ 210335%7 —  11%23*

3117419%423% + 21056116175 —  132672109%139%157°163

2+310109 = 23°
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Judging ABC triples

172412472 4+ 21033567 — 11423

31174194234 4 210567116175 — 132672109°139°157°163

2 + 310109 = 235

v
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Judging ABC triples

172412472 4+ 21033567 — 11423

Okay Example:
31174194234 4 21050110170 — 132672109°139%157%163

2 + 310109 = 235

v
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Judging ABC triples

Better Example:
172412472 4 21933567 = 11%23*

Okay Example:
31174194234 4 21050110170 — 132672109°139%157%163

2 + 310109 = 235

v
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Judging ABC triples

Better Example:
172412472 4 21933567 = 11%23*

Okay Example:
31174194234 4 21050110170 — 132672109°139%157%163

Best Example:
2 + 310109 = 23°

v
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Judging ABC triples

Better Example: (0.96132)
17°41%47° + 21933597 = 11%23*

Okay Example: (0.90013)
31174194234 4 21050110170 — 132672109°139%157%163

Best Example: (1.62991)
2 + 310109 = 23°

v

Eric Errthum Learning Your ABC




Judging ABC triples

Better Example: (0.96132)
17°41%47° + 21933597 = 11%23*

Okay Example: (0.90013)
31174194234 4 21050110170 — 132672109°139%157%163
Best Example: (1.62991)
2 + 310109 = 23°

Typical Example: (0.36287)
7-5701 + 37 - 1361 = 23 -3 - 3761

v
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ABCs
[eJe] Yo}

Measuring ABC triples

Definition

The radical of a number, rad(n), is the product of all the primes
dividing n.
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ABCs
[eJe] Yo}

Measuring ABC triples

Definition

The radical of a number, rad(n), is the product of all the primes
dividing n.

Example: rad(2734721015) =237 - 101.
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ABCs
[eJe] Yo}

Measuring ABC triples

Definition

The radical of a number, rad(n), is the product of all the primes
dividing n.

Example: rad(2734721015) =237 - 101.

Definition
The ABC Ratio of a triple A+ B = C is given by

In(C)
In(rad(ABC))

a=aAB,C)=

o’
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ABCs
[eJe] Yo}

Measuring ABC triples

Definition

The radical of a number, rad(n), is the product of all the primes
dividing n.
Example: rad(2734721015) =237 - 101.

Definition
The ABC Ratio of a triple A+ B = C is given by

B In(C)
~ In(rad(ABC))

a=a(AB,(C)

In(23°)

= 1.62991
In(2-3- 23 - 109)

Example: a(2,31°109,23%) =

o’
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Good ABC Triples

e Top three known ABC ratio (verified up to 10%°):
(2, 319100, 23°) with o =1.62991
(112, 325973, 2213) with o = 1.62599
(19 -1307, 7-29%-318, 283%25%) with o = 1.62349
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Good ABC Triples

e Top three known ABC ratio (verified up to 10%°):
(2, 319100, 23°) with o =1.62991
(112, 325973, 2213) with o = 1.62599
(19 -1307, 7-29%-318, 283%25%) with o = 1.62349

Definition

A good ABC triple is A+ B = C where o(A, B, C) > 1.4.
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Good ABC Triples

e Top three known ABC ratio (verified up to 10%°):
(2, 319100, 23°) with o =1.62991
(112, 325973, 2213) with o = 1.62599
(19 -1307, 7-29%-318, 283%25%) with o = 1.62349

Definition

A good ABC triple is A+ B = C where o(A, B, C) > 1.4.

o Largest known good ABC triples:
(22*5547°1812, 13119103 - 5712 - 4261, 7817 - 37?)
with a = 1.447420 and 29 digits
(5°17%23%37%43 - 4817, 31%11861%173*, 2°219°1272)
with oo = 1.419184 and 28 digits
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ABC Conjecture
€000

ABC Conjecture
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ABC Conjecture
€000

ABC Conjecture

In(C)
In(rad(ABC))
In(C) = «aln(rad(ABC))

= «
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ABC Conjecture
€000

ABC Conjecture

In(C)
In(rad(ABC))
In(C) = aln(rad(ABC)) = In((rad(ABC))%)

= «
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ABC Conjecture
€000

ABC Conjecture

In(C)
In(rad(ABC))
In(C) = aln(rad(ABC)) = In((rad(ABC))%)
C = (rad(ABC))“

= «
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ABC Conjecture
€000

ABC Conjecture

In(C)
In(rad(ABC))
In(C) = aln(rad(ABC)) = In((rad(ABC))%)
C = (rad(ABC))“

= «

ABC Conjecture (Oesterle and Masser, 1985)

For every n > 1, there exists only a finite number of ABC triples
such that

C > (rad(ABC))"
i.e. with a(A, B, C) > n.
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ABC Conjecture
000

Consequences

There is a largest (A, B, C). It might be 1.62991.
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ABC Conjecture
000

Consequences

There is a largest (A, B, C). It might be 1.62991.

If the largest o < 2, then Fermat's Last Theorem (no integer
solutions to x" 4+ y" = z" for n > 2) is proved.
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ABC Conjecture
000

Consequences

There is a largest (A, B, C). It might be 1.62991.

If the largest o < 2, then Fermat's Last Theorem (no integer
solutions to x" 4+ y" = z" for n > 2) is proved.

Proof: Suppose there was a solution, then let A= x", B = y",
C=2z".

Then rad(ABC) < xyz < z3. Applying the conjecture gives

z" < (rad(ABC))? < (23)? = z°. Hence n < 6.

The cases of 3 < n < 6 were proved in 1825 by Legendre and
Dirichlet.
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ABC Conjecture
[eYe] Yo

More Consequences

Corollary

If the ABC conjecture is true then the following are also proved:

@ The generalized Fermat o Mordell’s conjecture
equation @ Roth’s theorem

o Wieferich primes statement o Dressler’s conjecture

@ The Erdos-Woods @ Bounds for the order of the

conjecture Tate-Shafarevich group

@ Hall's conjecture

o Vojta’'s height conjecture
@ The Erdos-Mollin-Walsh o Greenberg's conjecture
conjecture @ The Schinzel-Tijdeman
@ Brocard's Problem conjecture
@ Szpiro's conjecture o Lang'’s conjecture

. and many more!
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ABC Conjecture
ocooe

How Close Are We to a Proof?
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ABC Conjecture
ocooe

How Close Are We to a Proof?

ABC Conjecture (Rephrased)

Given € > 0, there exists a constant K. such that for every A, B, C
coprime integers with A+ B = C,

logC < K+ (1+¢€)logR

where R = rad(ABC).
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ABC Conjecture
ocooe

How Close Are We to a Proof?

ABC Conjecture (Rephrased)

Given € > 0, there exists a constant K. such that for every A, B, C
coprime integers with A+ B = C,

logC < K+ (1+¢€)logR

where R = rad(ABC).

Theorem (Gyory (2007))

Let A, B, C be coprime integers with A+ B = C. Let t be the
number of prime factors in R = rad(ABC). Then

910422 ,
log C < tth(log R)
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An Analogy

@ Often a strong analogy between integers and polynomials with
rational coefficients.
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An Analogy

@ Often a strong analogy between integers and polynomials with
rational coefficients.

@ A prime polynomial is one that cannot be factorized into
smaller polynomials with rational coefficents.
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An Analogy

@ Often a strong analogy between integers and polynomials with
rational coefficients.

@ A prime polynomial is one that cannot be factorized into
smaller polynomials with rational coefficents.

o Example: x?> + 1 is prime, but x> — 1 = (x + 1)(x — 1) is not.
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An Analogy

@ Often a strong analogy between integers and polynomials with
rational coefficients.

@ A prime polynomial is one that cannot be factorized into
smaller polynomials with rational coefficents.

o Example: x?> + 1 is prime, but x> — 1 = (x + 1)(x — 1) is not.
(But x+1and x — 1 are.)
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An Analogy

@ Often a strong analogy between integers and polynomials with
rational coefficients.

@ A prime polynomial is one that cannot be factorized into
smaller polynomials with rational coefficents.

o Example: x?> + 1 is prime, but x> — 1 = (x + 1)(x — 1) is not.
(But x+1and x — 1 are.)

@ Let rad(P) be the product of all prime polynomials dividing P.
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An Analogy

@ Often a strong analogy between integers and polynomials with
rational coefficients.

@ A prime polynomial is one that cannot be factorized into
smaller polynomials with rational coefficents.

o Example: x?> + 1 is prime, but x> — 1 = (x + 1)(x — 1) is not.
(But x+1and x — 1 are.)

@ Let rad(P) be the product of all prime polynomials dividing P.
o Example: rad((x — 1)3(x®> +1)3) = (x — 1)(x®> + 1).
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An Analogy

@ Often a strong analogy between integers and polynomials with
rational coefficients.

@ A prime polynomial is one that cannot be factorized into
smaller polynomials with rational coefficents.

o Example: x?> + 1 is prime, but x> — 1 = (x + 1)(x — 1) is not.
(But x+1and x — 1 are.)

@ Let rad(P) be the product of all prime polynomials dividing P.

o Example: rad((x — 1)?(x? 4+ 1)3) = (x — 1)(x®> + 1).

o Let deg(P) be the degree of the polynomial. Notice that

deg(PQ) = deg(P) + deg(Q)
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An Analogy

@ Often a strong analogy between integers and polynomials with
rational coefficients.

@ A prime polynomial is one that cannot be factorized into
smaller polynomials with rational coefficents.

o Example: x?> + 1 is prime, but x> — 1 = (x + 1)(x — 1) is not.
(But x+1and x — 1 are.)

@ Let rad(P) be the product of all prime polynomials dividing P.
o Example: rad((x — 1)?(x? 4+ 1)3) = (x — 1)(x®> + 1).
o Let deg(P) be the degree of the polynomial. Notice that
deg(PQ) = deg(P) + deg(Q)
which is just like In(AB) = In(A) + In(B).
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The PQR Theorem

@ Replace A, B, C with polynomials P, Q, and R and replace In
with deg.
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The PQR Theorem

@ Replace A, B, C with polynomials P, Q, and R and replace In
with deg.

PQR Theorem (Hurwitz, Stothers, Mason)

Let P, Q, R be nonconstant relatively-prime polynomials that
satisfy P + Q = R, then

deg(R) < deg(rad(PQR)).
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PQR Proof

e First notice that d(FEY — rad(F).
g
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PQR Proof

e First notice that d(FEY — rad(F).
g

o Example: F = (x—12x*>+1)3
then F/' = 2(x —1)(x* +1)?(4x> —3x + 1)
so gcd(F,F') = (x—1)(x*+1)3
F

and cd(FF) ~ (x — 1)(x* + 1) = rad(F).
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PQR Proof

F
@ First notice that W = rad(F)
o
P+ Q = R
Pl+ Q/ — Rl
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PQR Proof

F
@ First notice that W = rad(F)

o
PP+PQ = PR
Pl+ Q/ — Rl
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PQR Proof

F
@ First notice that W = rad(F)

L
PP+P'Q = PR
- PPP+PQ = PR

Eric Errthum Learning Your ABC



PQR Proof

F
@ First notice that W = rad(F)

L
PP+P'Q = PR
- PPP+PQ = PR

PQ-PQ = PR-PR
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PQR Proof

F
@ First notice that W = rad(F)

o PPQ—-PQ =PR- PR
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PQR Proof

F
@ First notice that W = rad(F)
o P'Q— PQ' = PR - PR
P/ _ P /
® gcd(R,R') Q Q
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PQR Proof

F
@ First notice that W = rad(F)
o P'Q— PQ' = PR - PR
P/ _ P /
® gcd(R,R') Q Q

gcd(P, P") ged(Q, Q')
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PQR Proof

F
@ First notice that W = rad(F)
o P'Q— PQ' = PR - PR
P'Q - PQ' P'rad 'rad(P
[} ng(R, Rl) Q Q _ ra (Q) Q ra ( )

ged(P, P ged(Q, Q') ged(P, P’) B ged(Q, Q')
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PQR Proof

F
@ First notice that W = rad(F)
o P'Q— PQ' = PR - PR
P'Q - PQ' P'rad 'rad(P
[} ng(R, Rl) Q Q _ ra (Q) Q ra ( )

ged(P, P ged(Q, Q') ged(P, P’) B ged(Q, Q')

deg(gcd(R, R')) < deg(rad(Q)) + deg(rad(P))
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PQR Proof

F
@ First notice that W = rad(F)
o P'Q— PQ' = PR - PR
P'Q - PQ' P'rad 'rad(P
[} ng(R, Rl) Q Q _ ra (Q) Q ra ( )

ged(P, P ged(Q, Q') ged(P, P’) B ged(Q, Q')

deg(gcd(R, R')) < deg(rad(Q)) + deg(rad(P))
deg(gcd(R, R')) < deg(rad(PQ))
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PQR Proof

e First notice that gcd(ll::,F’) = rad(F).
o P'Q - PQ = PR~ PR
, P Q- PR P’rad(Q) Q'rad(P)
® 5cd(R,R = — .
Bed(R- ) | (P, P ecd(@, @) ~ acd(P.P) ~ gcd(Q, Q)

deg(gcd(R, R')) < deg(rad(Q)) + deg(rad(P))

deg (W) + deg(ged(R,R')) < deg(rad(PQ)) + deg(rad(R))
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PQR Proof

e First notice that gcd(ll::,F’) = rad(F).
o P'Q - PQ = PR~ PR
, P Q- PR P’rad(Q) Q'rad(P)
® 5cd(R,R = — .
Bed(R- ) | (P, P ecd(@, @) ~ acd(P.P) ~ gcd(Q, Q)

deg(gcd(R, R')) < deg(rad(Q)) + deg(rad(P))
deg (gcd(gR’)> + deg(gcd(R, R')) < deg(rad(PQ)) + deg(rad(R))
deg(R) < deg(rad(PQR))
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What | Did

@ The ABC Conjecture can be generalized to number fields
Q(¢) where ( is the root of a rational polynomial.
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@ The ABC Conjecture can be generalized to number fields
Q(¢) where ( is the root of a rational polynomial.

Example (Dokchitser)

(2—(¢-3=0=¢= 1B c Q(vV13),

then ¢ +(C+1)°(¢-1)=2°(C+1)°
—~—

A B Cc
This triple has algebraic ABC Ratio of 2.029.
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then ¢ +(C+1)°(¢-1)=2°(C+1)°
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@ There are “interesting” surfaces in algebraic geometry with
“special” points that correspond to algebraic numbers.

@ The corresponding algebraic numbers satisfy oo + 6 = - and
are usually smooth.
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What | Did

@ The ABC Conjecture can be generalized to number fields
Q(¢) where ( is the root of a rational polynomial.

Example (Dokchitser)

(2-¢-3=0=¢ =B cQ(vB),

then ¢ +(¢+1)"°(¢C-1)=2°((+1)°
~—

A B Cc
This triple has algebraic ABC Ratio of 2.029.

@ There are “interesting” surfaces in algebraic geometry with
“special” points that correspond to algebraic numbers.

@ The corresponding algebraic numbers satisfy oo + 6 = - and
are usually smooth.

@ | used some algorithms developed in my thesis to generate 350
of these examples and computed their algebraic ABC ratios.
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Results
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Results

Alg. ABC Ratios
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@ Points given in order of the degree of the defining polynomial.
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@ Points given in order of the degree of the defining polynomial.

@ None of these “special” points correspond to a good ABC
example.
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example.

@ Data does follow a trend. Proof?
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@ Points given in order of the degree of the defining polynomial.

@ None of these “special” points correspond to a good ABC
example.

@ Data does follow a trend. Proof? No idea how to even begin.
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Results

Alg. ABC Ratios

Points given in order of the degree of the defining polynomial.

None of these “special” points correspond to a good ABC
example.

Data does follow a trend. Proof? No idea how to even begin.
Failure?
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Results

Alg. ABC Ratios

* * *y

Points given in order of the degree of the defining polynomial.

None of these “special” points correspond to a good ABC
example.

Data does follow a trend. Proof? No idea how to even begin.

Failure? Well, yes, but no.
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The End?

Thanks!

More information:
The ABC Conjecture Home Page
http://www.math.unicaen.fr/"nitaj/abc.html
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