Learning Your ABC

Eric Errthum Winona State University

January 21, 2009

• **Definition:** A prime is a positive whole number that cannot be divided evenly by anything except 1 and itself.

• **Definition:** A prime is a positive whole number that cannot be divided evenly by anything except 1 and itself.

Examples

2, 3, 5, 7, 11, 13, ...

Introduction

• **Definition:** A prime is a positive whole number that cannot be divided evenly by anything except 1 and itself.

$$2, 3, 5, 7, 11, 13, \ldots 2^{32582657} - 1, \ldots$$

• **Definition:** A prime is a positive whole number that cannot be divided evenly by anything except 1 and itself.

Examples

$$2, 3, 5, 7, 11, 13, \ldots 2^{32582657} - 1, \ldots$$

 Awesome Property: Every rational number can be written as a product of primes to a power.

Introduction

• **Definition:** A prime is a positive whole number that cannot be divided evenly by anything except 1 and itself.

Examples

$$2, 3, 5, 7, 11, 13, \ldots 2^{32582657} - 1, \ldots$$

 Awesome Property: Every rational number can be written as a product of primes to a power.

Examples

 $\bullet \ 662415793599696251 = 239 \cdot 57301 \cdot 94873 \cdot 509833$

Introduction

• **Definition:** A prime is a positive whole number that cannot be divided evenly by anything except 1 and itself.

Examples

$$2, 3, 5, 7, 11, 13, \ldots 2^{32582657} - 1, \ldots$$

 Awesome Property: Every rational number can be written as a product of primes to a power.

Examples

 $\bullet \ 662415793599696251 = 239 \cdot 57301 \cdot 94873 \cdot 509833$

$$\frac{27008742384}{27680640625} = 2^4 \cdot 3^5 \cdot 5^{-6} \cdot 11^{-6} \cdot 13 \cdot 17^2 \cdot 43^2$$

Mv Work

$$2 = 2$$

$$3 = 3$$

$$4 = 2^2$$

$$5 = 5$$

$$6 = 2 \cdot 3$$

$$7 = 7$$

$$8 = 2^3$$

$$9 = 3^2$$

$$10 = 2 \cdot 5$$

$$11 = 11$$

$$12 = 2^2 \cdot 3$$

$$22 = 2 \cdot 11$$

$$23 = 23$$

$$24 = 2^3 \cdot 3$$

$$25 = 5^2$$

$$26 = 2 \cdot 23$$

$$27 = 3^3$$

$$28 = 2^2 \cdot 7$$

$$29 = 29$$

$$30 = 2 \cdot 3 \cdot 5$$

$$31 = 31$$

$$32 = 2^5$$

$$122 = 2 \cdot 61$$

$$123 = 3 \cdot 41$$

$$124 = 2^2 \cdot 31$$

$$125 = 5^3$$

$$126 = 2 \cdot 3^2 \cdot 7$$

$$127 = 127$$

$$128 = 2^7$$

$$129 = 3 \cdot 43$$

$$130 = 2 \cdot 513$$

$$131 = 131$$

$$132 = 2^2 \cdot 3 \cdot 11$$

Introduction

$$55122 = 2 \cdot 3 \cdot 9187$$

$$55123 = 199 \cdot 277$$

$$55124 = 2^2 \cdot 13781$$

$$55125 = 3^2 \cdot 5^4 \cdot 7^2$$

$$55126 = 2 \cdot 43 \cdot 641$$

$$55127 = 55127$$

$$55128 = 2^3 \cdot 3 \cdot 2297$$

$$55129 = 29 \cdot 1901$$

$$55130 = 2 \cdot 5 \cdot 37 \cdot 149$$

$$55131 = 3 \cdot 17 \cdot 23 \cdot 47$$

$$55132 = 2^2 \cdot 7 \cdot 11 \cdot 179$$

Introduction

```
7796955122 = 2 \cdot 11 \cdot 354407051
7796955123 = 3^2 \cdot 17 \cdot 50960491
7796955124 = 2^2 \cdot 7 \cdot 12527 \cdot 22229
7796955125 = 5^3 \cdot 62375641
7796955126 = 2 \cdot 3 \cdot 1299492521
7796955127 = 13 \cdot 23 \cdot 3929 \cdot 6637
7796955128 = 2^3 \cdot 523 \cdot 1863517
7796955129 = 3 \cdot 37 \cdot 70242839
7796955130 = 2 \cdot 5 \cdot 2777 \cdot 280769
7796955131 = 7 \cdot 229 \cdot 1487 \cdot 3271
7796955132 = 2^2 \cdot 3^3 \cdot 2503 \cdot 28843
```


Mv Work

 \bullet a and a+1 have wildly different factorizations

- ullet a and a+1 have wildly different factorizations
- As a gets really big, the factorizations become mostly "large" primes (like 2503) to a small power (like 1). (Demo)

Introduction

- ullet a and a+1 have wildly different factorizations
- As a gets really big, the factorizations become mostly "large" primes (like 2503) to a small power (like 1). (Demo)
- Some rare gems are still "small" primes to a "large" power, e.g. $55125 = 3^2 \cdot 5^4 \cdot 7^2$ and $55962140625 = 3^6 \cdot 5^6 \cdot 17^3$.

Introduction

- ullet a and a+1 have wildly different factorizations
- As a gets really big, the factorizations become mostly "large" primes (like 2503) to a small power (like 1). (Demo)
- Some rare gems are still "small" primes to a "large" power, e.g. $55125 = 3^2 \cdot 5^4 \cdot 7^2$ and $55962140625 = 3^6 \cdot 5^6 \cdot 17^3$.
- We call these numbers smooth.

• If I know the prime factorization of a and b, then it's easy to find the prime factorization of ab.

• If I know the prime factorization of a and b, then it's easy to find the prime factorization of ab.

Example

Introduction

$$\frac{160000}{1058841} = a = 2^{8} \cdot 3^{-2} \cdot 5^{4} \cdot 7^{-6}$$

$$\frac{14235529}{24} = b = 2^{-3} \cdot 3^{-1} \cdot 7^{6} \cdot 11^{2}$$

$$\frac{2420000}{27} = ab =$$

My Work

• If I know the prime factorization of a and b, then it's easy to find the prime factorization of ab.

$$\frac{\frac{160000}{1058841}}{\frac{14235529}{24}} = a = 2^{8} \cdot 3^{-2} \cdot 5^{4} \cdot 7^{-6} \cdot 11^{0}$$

$$\frac{\frac{14235529}{24}}{24} = b = 2^{-3} \cdot 3^{-1} \cdot 5^{0} \cdot 7^{6} \cdot 11^{2}$$

$$\frac{\frac{2420000}{27}}{27} = ab =$$

• If I know the prime factorization of a and b, then it's easy to find the prime factorization of ab.

Example

Introduction

$$\frac{160000}{1058841} = a = 2^{8} \cdot 3^{-2} \cdot 5^{4} \cdot 7^{-6} \cdot 11^{0}$$

$$\frac{14235529}{24} = b = 2^{-3} \cdot 3^{-1} \cdot 5^{0} \cdot 7^{6} \cdot 11^{2}$$

$$\frac{2420000}{27} = ab = 2^{5} \cdot 3^{-3} \cdot 5^{4} \cdot 7^{0} \cdot 11^{2}$$

• If I know the prime factorization of a and b, then it's easy to find the prime factorization of ab.

Example

Introduction

$$\frac{160000}{1058841} = a = 2^{8} \cdot 3^{-2} \cdot 5^{4} \cdot 7^{-6} \cdot 11^{0}$$

$$\frac{14235529}{24} = b = 2^{-3} \cdot 3^{-1} \cdot 5^{0} \cdot 7^{6} \cdot 11^{2}$$

$$\frac{2420000}{27} = ab = 2^{5} \cdot 3^{-3} \cdot 5^{4} \cdot 11^{2}$$

• If I know the prime factorization of a and b, then it's easy to find the prime factorization of ab.

Example

Introduction

$$\frac{160000}{1058841} = a = 2^{8} \cdot 3^{-2} \cdot 5^{4} \cdot 7^{-6} \cdot 11^{0}$$

$$\frac{14235529}{24} = b = 2^{-3} \cdot 3^{-1} \cdot 5^{0} \cdot 7^{6} \cdot 11^{2}$$

$$\frac{2420000}{27} = ab = 2^{5} \cdot 3^{-3} \cdot 5^{4} \cdot 11^{2}$$

• But what about a + b?

• If I know the prime factorization of a and b, then it's easy to find the prime factorization of ab.

Example

Introduction

$$\frac{160000}{1058841} = a = 2^{8} \cdot 3^{-2} \cdot 5^{4} \cdot 7^{-6} \cdot 11^{0}$$

$$\frac{14235529}{24} = b = 2^{-3} \cdot 3^{-1} \cdot 5^{0} \cdot 7^{6} \cdot 11^{2}$$

$$\frac{2420000}{27} = ab = 2^{5} \cdot 3^{-3} \cdot 5^{4} \cdot 11^{2}$$

• But what about a + b?

$$a + b = 2^{-3} \cdot 3^{-2} \cdot 7^{-6} \cdot 40949 \cdot 122698687$$

Introduction

(smooth)*(smooth) = smooth

My Work

Introduction

- (smooth)*(smooth) = smooth
- (smooth)+(smooth) = probably not smooth

My Work

Introduction

- (smooth)*(smooth) = smooth
- (smooth)+(smooth) = probably not smoothBUT SOMETIMES IT IS!

Introduction

- (smooth)*(smooth) = smooth
- (smooth)+(smooth) = probably not smooth BUT SOMETIMES IT IS!

$$17^2 41^2 47^2 + 2^{10} 3^3 5^6 7 = 11^4 23^4$$

$$3^{11}7^419^423^4 + 2^{10}5^611^617^6 = 13^267^2109^2139^2157^2163$$

$$2 + 3^{10}109 = 23^5$$

Introduction

- (smooth)*(smooth) = smooth
- (smooth)+(smooth) = probably not smooth BUT SOMETIMES IT IS!

$$17^{2}41^{2}47^{2} + 2^{10}3^{3}5^{6}7 = 11^{4}23^{4}$$

$$2 \cdot 17^{2}41^{2}47^{2} + 2^{10}3^{3}5^{6}7 =$$

$$3^{11}7^{4}19^{4}23^{4} + 2^{10}5^{6}11^{6}17^{6} = 13^{2}67^{2}109^{2}139^{2}157^{2}163$$

$$2 + 3^{10}109 = 23^{5}$$

Introduction

- (smooth)*(smooth) = smooth
- (smooth)+(smooth) = probably not smooth BUT SOMETIMES IT IS!

$$17^{2}41^{2}47^{2} + 2^{10}3^{3}5^{6}7 = 11^{4}23^{4}$$

$$2 \cdot 17^{2}41^{2}47^{2} + 2^{10}3^{3}5^{6}7 = 2 \cdot 353 \cdot 7323377$$

$$3^{11}7^{4}19^{4}23^{4} + 2^{10}5^{6}11^{6}17^{6} = 13^{2}67^{2}109^{2}139^{2}157^{2}163$$

$$2 + 3^{10}109 = 23^{5}$$

Introduction

- (smooth)*(smooth) = smooth
- (smooth)+(smooth) = probably not smooth BUT SOMETIMES IT IS!

$$17^{2}41^{2}47^{2} + 2^{10}3^{3}5^{6}7 = 11^{4}23^{4}$$

$$2 \cdot 17^{2}41^{2}47^{2} + 2^{10}3^{3}5^{6}7 = 2 \cdot 353 \cdot 7323377$$

$$3^{11}7^{4}19^{4}23^{4} + 2^{10}5^{6}11^{6}17^{6} = 13^{2}67^{2}109^{2}139^{2}157^{2}163$$

$$3^{12}7^{4}19^{4}23^{4} + 2^{10}5^{6}11^{6}17^{6} =$$

$$2 + 3^{10}109 = 23^{5}$$

Introduction

- (smooth)*(smooth) = smooth
- (smooth)+(smooth) = probably not smooth BUT SOMETIMES IT IS!

$$17^{2}41^{2}47^{2} + 2^{10}3^{3}5^{6}7 = 11^{4}23^{4}$$

$$2 \cdot 17^{2}41^{2}47^{2} + 2^{10}3^{3}5^{6}7 = 2 \cdot 353 \cdot 7323377$$

$$3^{11}7^{4}19^{4}23^{4} + 2^{10}5^{6}11^{6}17^{6} = 13^{2}67^{2}109^{2}139^{2}157^{2}163$$

$$3^{12}7^{4}19^{4}23^{4} + 2^{10}5^{6}11^{6}17^{6} = 37 \cdot 19749002441821462573$$

$$2 + 3^{10}109 = 23^{5}$$

Introduction

- (smooth)*(smooth) = smooth
- (smooth)+(smooth) = probably not smooth BUT SOMETIMES IT IS!

$$17^{2}41^{2}47^{2} + 2^{10}3^{3}5^{6}7 = 11^{4}23^{4}$$

$$2 \cdot 17^{2}41^{2}47^{2} + 2^{10}3^{3}5^{6}7 = 2 \cdot 353 \cdot 7323377$$

$$3^{11}7^{4}19^{4}23^{4} + 2^{10}5^{6}11^{6}17^{6} = 13^{2}67^{2}109^{2}139^{2}157^{2}163$$

$$3^{12}7^{4}19^{4}23^{4} + 2^{10}5^{6}11^{6}17^{6} = 37 \cdot 19749002441821462573$$

$$2 + 3^{10}109 = 23^{5}$$

$$5 \cdot 2 + 5 \cdot 3^{10}109 =$$

Introduction

- (smooth)*(smooth) = smooth
- (smooth)+(smooth) = probably not smooth BUT SOMETIMES IT IS!

$$17^{2}41^{2}47^{2} + 2^{10}3^{3}5^{6}7 = 11^{4}23^{4}$$

$$2 \cdot 17^{2}41^{2}47^{2} + 2^{10}3^{3}5^{6}7 = 2 \cdot 353 \cdot 7323377$$

$$3^{11}7^{4}19^{4}23^{4} + 2^{10}5^{6}11^{6}17^{6} = 13^{2}67^{2}109^{2}139^{2}157^{2}163$$

$$3^{12}7^{4}19^{4}23^{4} + 2^{10}5^{6}11^{6}17^{6} = 37 \cdot 19749002441821462573$$

$$2 + 3^{10}109 = 23^{5}$$

$$5 \cdot 2 + 5 \cdot 3^{10}109 = 5 \cdot 23^{5}$$

Introduction

- (smooth)*(smooth) = smooth
- (smooth)+(smooth) = probably not smooth BUT SOMETIMES IT IS!

$$17^{2}41^{2}47^{2} + 2^{10}3^{3}5^{6}7 = 11^{4}23^{4}$$

$$2 \cdot 17^{2}41^{2}47^{2} + 2^{10}3^{3}5^{6}7 = 2 \cdot 353 \cdot 7323377$$

$$3^{11}7^{4}19^{4}23^{4} + 2^{10}5^{6}11^{6}17^{6} = 13^{2}67^{2}109^{2}139^{2}157^{2}163$$

$$3^{12}7^{4}19^{4}23^{4} + 2^{10}5^{6}11^{6}17^{6} = 37 \cdot 19749002441821462573$$

$$2 + 3^{10}109 = 23^{5}$$

$$5 \cdot 2 + 5 \cdot 3^{10}109 = 5 \cdot 23^{5}$$
 Cheating!

Introduction

- (smooth)*(smooth) = smooth
- (smooth)+(smooth) = probably not smooth BUT SOMETIMES IT IS!

$$17^2 41^2 47^2 + 2^{10} 3^3 5^6 7 = 11^4 23^4$$

$$3^{11}7^419^423^4 + 2^{10}5^611^617^6 = 13^267^2109^2139^2157^2163$$

$$2 + 3^{10}109 = 23^5$$

Judging ABC triples

Examples

Introduction

$$17^241^247^2 + 2^{10}3^35^67 = 11^423^4$$

$$3^{11}7^419^423^4 + 2^{10}5^611^617^6 = 13^267^2109^2139^2157^2163$$

$$2 + 3^{10}109 = 23^5$$

My Work

Examples

Introduction

$$17^2 41^2 47^2 + 2^{10} 3^3 5^6 7 = 11^4 23^4$$

Okay Example:

$$3^{11}7^419^423^4 + 2^{10}5^611^617^6 = 13^267^2109^2139^2157^2163$$

$$2 + 3^{10}109 = 23^5$$

ABCs

Judging ABC triples

Examples

Introduction

Better Example:

$$17^241^247^2 + 2^{10}3^35^67 = 11^423^4$$

Okay Example:

$$3^{11}7^419^423^4 + 2^{10}5^611^617^6 = 13^267^2109^2139^2157^2163$$

$$2 + 3^{10}109 = 23^5$$

Examples

Introduction

Better Example:

$$17^241^247^2 + 2^{10}3^35^67 = 11^423^4$$

Okay Example:

$$3^{11}7^419^423^4 + 2^{10}5^611^617^6 = 13^267^2109^2139^2157^2163$$

Best Example:

$$2 + 3^{10}109 = 23^5$$

Examples

Introduction

Better Example: (0.96132)

$$17^2 41^2 47^2 + 2^{10} 3^3 5^6 7 = 11^4 23^4$$

ABCs

Okay Example: (0.90013)

$$3^{11}7^419^423^4 + 2^{10}5^611^617^6 = 13^267^2109^2139^2157^2163$$

Best Example: (1.62991)

$$2 + 3^{10}109 = 23^5$$

Examples

Introduction

Better Example: (0.96132)

$$17^2 41^2 47^2 + 2^{10} 3^3 5^6 7 = 11^4 23^4$$

Okay Example: (0.90013)

$$3^{11}7^419^423^4 + 2^{10}5^611^617^6 = 13^267^2109^2139^2157^2163$$

Best Example: (1.62991)

$$2 + 3^{10}109 = 23^5$$

Typical Example: (0.36287)

$$7 \cdot 5701 + 37 \cdot 1361 = 2^3 \cdot 3 \cdot 3761$$

Definition

The **radical** of a number, rad(n), is the product of all the primes dividing n.

Definition

Introduction

The **radical** of a number, rad(n), is the product of all the primes dividing n.

Example: $rad(2^73^47^2101^5) = 2 \cdot 3 \cdot 7 \cdot 101$.

My Work

Definition

Introduction

The **radical** of a number, rad(n), is the product of all the primes dividing n.

Example: $rad(2^73^47^2101^5) = 2 \cdot 3 \cdot 7 \cdot 101$.

Definition

The **ABC Ratio** of a triple A + B = C is given by

$$\alpha = \alpha(A, B, C) = \frac{\ln(C)}{\ln(\operatorname{rad}(ABC))}.$$

Definition

The **radical** of a number, rad(n), is the product of all the primes dividing n.

Example: $rad(2^73^47^2101^5) = 2 \cdot 3 \cdot 7 \cdot 101.$

Definition

The **ABC Ratio** of a triple A + B = C is given by

$$\alpha = \alpha(A, B, C) = \frac{\ln(C)}{\ln(\operatorname{rad}(ABC))}.$$

Example:
$$\alpha(2, 3^{10}109, 23^5) = \frac{\ln(23^5)}{\ln(2 \cdot 3 \cdot 23 \cdot 109)} = 1.62991$$

Good ABC Triples

Introduction

• Top three known ABC ratio (verified up to 10^{20}):

$$\begin{array}{ccccc} (2,\ 3^{10}109,\ 23^5) & \text{with} & \alpha=1.62991 \\ (11^2,\ 3^25^67^3,\ 2^{21}3) & \text{with} & \alpha=1.62599 \\ (19\cdot1307,\ 7\cdot29^2\cdot31^8,\ 2^83^{22}5^4) & \text{with} & \alpha=1.62349 \end{array}$$

Good ABC Triples

Introduction

• Top three known ABC ratio (verified up to 10^{20}):

$$\begin{array}{ccccc} (2,\ 3^{10}109,\ 23^5) & \mbox{with} & \alpha=1.62991 \\ (11^2,\ 3^25^67^3,\ 2^{21}3) & \mbox{with} & \alpha=1.62599 \\ (19\cdot 1307,\ 7\cdot 29^2\cdot 31^8,\ 2^83^{22}5^4) & \mbox{with} & \alpha=1.62349 \end{array}$$

Definition

A good ABC triple is A + B = C where $\alpha(A, B, C) > 1.4$.

My Work

Good ABC Triples

• Top three known ABC ratio (verified up to 10^{20}):

$$\begin{array}{cccc} (2,\ 3^{10}109,\ 23^5) & \mbox{with} & \alpha=1.62991 \\ (11^2,\ 3^25^67^3,\ 2^{21}3) & \mbox{with} & \alpha=1.62599 \\ (19\cdot1307,\ 7\cdot29^2\cdot31^8,\ 2^83^{22}5^4) & \mbox{with} & \alpha=1.62349 \end{array}$$

Definition

A good ABC triple is A + B = C where $\alpha(A, B, C) > 1.4$.

Largest known good ABC triples:

$$(2^{24}5^547^5181^2,\ 13^{14}19\cdot 103\cdot 571^2\cdot 4261,\ 7^{28}17\cdot 37^2)$$
 with $\alpha=1.447420$ and 29 digits
$$(5^917^223^437^243\cdot 4817,\ 3^{14}11^861^2173^4,\ 2^{52}19^6127^2)$$
 with $\alpha=1.419184$ and 28 digits

Introduction

$$\frac{\ln(C)}{\ln(\operatorname{rad}(ABC))} = \alpha$$

My Work

$$\frac{\ln(C)}{\ln(\operatorname{rad}(ABC))} = \alpha$$

$$\ln(C) = \alpha \ln(\operatorname{rad}(ABC))$$

$$\frac{\ln(C)}{\ln(\operatorname{rad}(ABC))} = \alpha$$

$$\ln(C) = \alpha \ln(\operatorname{rad}(ABC)) = \ln((\operatorname{rad}(ABC))^{\alpha})$$

$$\frac{\ln(C)}{\ln(\operatorname{rad}(ABC))} = \alpha$$

$$\ln(C) = \alpha \ln(\operatorname{rad}(ABC)) = \ln((\operatorname{rad}(ABC))^{\alpha})$$

$$C = (\operatorname{rad}(ABC))^{\alpha}$$

Introduction

$$\frac{\ln(C)}{\ln(\operatorname{rad}(ABC))} = \alpha$$

$$\ln(C) = \alpha \ln(\operatorname{rad}(ABC)) = \ln((\operatorname{rad}(ABC))^{\alpha})$$

$$C = (\operatorname{rad}(ABC))^{\alpha}$$

ABC Conjecture (Oesterle and Masser, 1985)

For every $\eta > 1$, there exists only a finite number of ABC triples such that

$$C > (\operatorname{\mathsf{rad}}(ABC))^\eta$$

i.e. with $\alpha(A, B, C) > \eta$.

Consequences

Corollary

There is a largest $\alpha(A, B, C)$. It might be 1.62991.

Consequences

Introduction

Corollary

There is a largest $\alpha(A, B, C)$. It might be 1.62991.

Corollary

If the largest $\alpha < 2$, then Fermat's Last Theorem (no integer solutions to $x^n + y^n = z^n$ for n > 2) is proved.

Consequences

Corollary

Introduction

There is a largest $\alpha(A, B, C)$. It might be 1.62991.

Corollary

If the largest $\alpha < 2$, then Fermat's Last Theorem (no integer solutions to $x^n + y^n = z^n$ for n > 2) is proved.

Proof: Suppose there was a solution, then let $A = x^n$, $B = y^n$, $C = z^n$.

Then $rad(ABC) \le xyz \le z^3$. Applying the conjecture gives $z^n < (rad(ABC))^2 < (z^3)^2 = z^6$. Hence n < 6.

The cases of $3 \le n \le 6$ were proved in 1825 by Legendre and Dirichlet.

More Consequences

Corollary

If the ABC conjecture is true then the following are also proved:

- The generalized Fermat equation
- Wieferich primes statement
- The Erdos-Woods conjecture
- Hall's conjecture
- The Erdos-Mollin-Walsh conjecture
- Brocard's Problem
- Szpiro's conjecture

- Mordell's conjecture
- Roth's theorem
- Dressler's conjecture
- Bounds for the order of the Tate-Shafarevich group
- Vojta's height conjecture
- Greenberg's conjecture
- The Schinzel-Tijdeman conjecture
- Lang's conjecture

... and many more!

How Close Are We to a Proof?

Introduction

How Close Are We to a Proof?

ABC Conjecture (Rephrased)

Given $\epsilon > 0$, there exists a constant K_{ϵ} such that for every A, B, Ccoprime integers with A + B = C,

$$\log C \le K_{\epsilon} + (1+\epsilon) \log R$$

where R = rad(ABC).

Introduction

How Close Are We to a Proof?

ABC Conjecture (Rephrased)

Given $\epsilon > 0$, there exists a constant K_{ϵ} such that for every A, B, Ccoprime integers with A + B = C,

$$\log C \le K_{\epsilon} + (1+\epsilon) \log R$$

where R = rad(ABC).

Theorem (Gyory (2007))

Let A, B, C be coprime integers with A + B = C. Let t be the number of prime factors in R = rad(ABC). Then

$$\log C < \frac{2^{10t+22}}{t^{t-4}} R (\log R)^t$$

 Often a strong analogy between integers and polynomials with rational coefficients.

- Often a strong analogy between integers and polynomials with rational coefficients.
- A prime polynomial is one that cannot be factorized into smaller polynomials with rational coefficients.

- Often a strong analogy between integers and polynomials with rational coefficients.
- A prime polynomial is one that cannot be factorized into smaller polynomials with rational coefficients.
- Example: $x^2 + 1$ is prime, but $x^2 1 = (x + 1)(x 1)$ is not.

- Often a strong analogy between integers and polynomials with rational coefficients.
- A prime polynomial is one that cannot be factorized into smaller polynomials with rational coefficients.
- Example: $x^2 + 1$ is prime, but $x^2 1 = (x + 1)(x 1)$ is not. (But x + 1 and x 1 are.)

- Often a strong analogy between integers and polynomials with rational coefficients.
- A prime polynomial is one that cannot be factorized into smaller polynomials with rational coefficients.
- Example: $x^2 + 1$ is prime, but $x^2 1 = (x + 1)(x 1)$ is not. (But x + 1 and x 1 are.)
- Let rad(P) be the product of all prime polynomials dividing P.

- Often a strong analogy between integers and polynomials with rational coefficients.
- A prime polynomial is one that cannot be factorized into smaller polynomials with rational coefficients.
- Example: $x^2 + 1$ is prime, but $x^2 1 = (x + 1)(x 1)$ is not. (But x + 1 and x 1 are.)
- Let rad(P) be the product of all prime polynomials dividing P.
- Example: $rad((x-1)^2(x^2+1)^3) = (x-1)(x^2+1)$.

Introduction

- Often a strong analogy between integers and polynomials with rational coefficients.
- A prime polynomial is one that cannot be factorized into smaller polynomials with rational coefficients.
- Example: $x^2 + 1$ is prime, but $x^2 1 = (x + 1)(x 1)$ is not. (But x + 1 and x 1 are.)
- Let rad(P) be the product of all prime polynomials dividing P.
- Example: $rad((x-1)^2(x^2+1)^3) = (x-1)(x^2+1)$.
- ullet Let deg(P) be the degree of the polynomial. Notice that

$$\deg(PQ) = \deg(P) + \deg(Q)$$

POR

My Work

Introduction

- Often a strong analogy between integers and polynomials with rational coefficients.
- A prime polynomial is one that cannot be factorized into smaller polynomials with rational coefficients.
- Example: $x^2 + 1$ is prime, but $x^2 1 = (x + 1)(x 1)$ is not. (But x + 1 and x 1 are.)
- Let rad(P) be the product of all prime polynomials dividing P.
- Example: $rad((x-1)^2(x^2+1)^3) = (x-1)(x^2+1)$.
- Let deg(P) be the degree of the polynomial. Notice that

$$\deg(PQ) = \deg(P) + \deg(Q)$$

which is just like ln(AB) = ln(A) + ln(B).

The PQR Theorem

Replace A, B, C with polynomials P, Q, and R and replace In with deg.

The PQR Theorem

 Replace A, B, C with polynomials P, Q, and R and replace In with deg.

PQR Theorem (Hurwitz, Stothers, Mason)

Let P, Q, R be nonconstant relatively-prime polynomials that satisfy P+Q=R, then

PQR Proof

Introduction

• First notice that $\frac{F}{\gcd(F,F')} = \operatorname{rad}(F)$.

My Work

PQR Proof

- First notice that $\frac{F}{\gcd(F,F')} = \operatorname{rad}(F)$.
- Example: $F = (x-1)^2(x^2+1)^3$ then $F' = 2(x-1)(x^2+1)^2(4x^2-3x+1)$ so $\gcd(F,F') = (x-1)(x^2+1)^2$ and $\frac{F}{\gcd(F,F')} = (x-1)(x^2+1) = \operatorname{rad}(F).$

Introduction

• First notice that
$$\frac{F}{\gcd(F,F')} = \operatorname{rad}(F)$$
.

•

$$P + Q = R$$

$$P' + Q' = R'$$

Introduction

• First notice that
$$\frac{F}{\gcd(F,F')} = \operatorname{rad}(F)$$
.

0

$$P'P + P'Q = P'R$$

 $P' + Q' = R'$

Introduction

• First notice that
$$\frac{F}{\gcd(F,F')} = \operatorname{rad}(F)$$
.

•

$$P'P + P'Q = P'R$$

$$- PP' + PQ' = PR'$$

Introduction

• First notice that
$$\frac{F}{\gcd(F,F')} = \operatorname{rad}(F)$$
.

•

$$-\frac{P'P + P'Q}{PP' + PQ'} = \frac{P'R}{PR'}$$

$$-\frac{PP' + PQ'}{P'Q - PQ'} = \frac{P'R - PR'}{P'R - PR'}$$

Introduction

- First notice that $\frac{F}{\gcd(F,F')} = \operatorname{rad}(F)$.
- P'Q PQ' = P'R PR'.

- First notice that $\frac{F}{\gcd(F,F')} = \operatorname{rad}(F)$.
- P'Q PQ' = P'R PR'.
- gcd(R,R') P'Q-PQ'

- First notice that $\frac{F}{\gcd(F, F')} = \operatorname{rad}(F)$.
- P'Q PQ' = P'R PR'.
- $gcd(R, R') \left| \frac{P'Q PQ'}{gcd(P, P') gcd(Q, Q')} \right|$

- First notice that $\frac{F}{\gcd(F, F')} = \operatorname{rad}(F)$.
- P'Q PQ' = P'R PR'.
- $\bullet \ \gcd(R,R') \left| \frac{P'Q PQ'}{\gcd(P,P')\gcd(Q,Q')} = \frac{P' \mathrm{rad}(Q)}{\gcd(P,P')} \frac{Q' \mathrm{rad}(P)}{\gcd(Q,Q')}. \right.$

- First notice that $\frac{F}{\gcd(F, F')} = \operatorname{rad}(F)$.
- P'Q PQ' = P'R PR'

$$\bullet \ \gcd(R,R') \left| \frac{P'Q - PQ'}{\gcd(P,P')\gcd(Q,Q')} = \frac{P'\mathsf{rad}(Q)}{\gcd(P,P')} - \frac{Q'\mathsf{rad}(P)}{\gcd(Q,Q')}. \right.$$

$$\deg(\gcd(R,R')) < \deg(\operatorname{rad}(Q)) + \deg(\operatorname{rad}(P))$$

Introduction

• First notice that $\frac{F}{\gcd(F, F')} = \operatorname{rad}(F)$.

ABCs

• P'Q - PQ' = P'R - PR'.

$$\bullet \ \gcd(R,R') \left| \frac{P'Q - PQ'}{\gcd(P,P')\gcd(Q,Q')} = \frac{P'\mathsf{rad}(Q)}{\gcd(P,P')} - \frac{Q'\mathsf{rad}(P)}{\gcd(Q,Q')}. \right.$$

$$\begin{split} \deg(\gcd(R,R')) &< \deg(\operatorname{rad}(Q)) + \deg(\operatorname{rad}(P)) \\ \deg(\gcd(R,R')) &< \deg(\operatorname{rad}(PQ)) \end{split}$$

- First notice that $\frac{F}{\gcd(F,F')} = \operatorname{rad}(F)$.
- P'Q PQ' = P'R PR'.

•
$$\gcd(R, R') \left| \frac{P'Q - PQ'}{\gcd(P, P') \gcd(Q, Q')} = \frac{P' \operatorname{rad}(Q)}{\gcd(P, P')} - \frac{Q' \operatorname{rad}(P)}{\gcd(Q, Q')} \right|$$

$$\deg(\gcd(R,R')) < \deg(\operatorname{rad}(Q)) + \deg(\operatorname{rad}(P))$$

$$\deg\left(\frac{R}{\gcd(R,R')}\right) + \deg(\gcd(R,R')) < \deg(\operatorname{rad}(PQ)) + \deg(\operatorname{rad}(R))$$

- First notice that $\frac{F}{\gcd(F, F')} = \operatorname{rad}(F)$.
- P'Q PQ' = P'R PR'

•
$$\gcd(R, R') \left| \frac{P'Q - PQ'}{\gcd(P, P')\gcd(Q, Q')} = \frac{P'\operatorname{rad}(Q)}{\gcd(P, P')} - \frac{Q'\operatorname{rad}(P)}{\gcd(Q, Q')} \right|$$

$$\deg(\gcd(R,R')) < \deg(\operatorname{rad}(Q)) + \deg(\operatorname{rad}(P))$$

$$\deg\left(\frac{R}{\gcd(R,R')}\right) + \deg(\gcd(R,R')) < \deg(\operatorname{rad}(PQ)) + \deg(\operatorname{rad}(R))$$

$$\deg(R) < \deg(\operatorname{rad}(PQR))$$

• The ABC Conjecture can be generalized to number fields $\mathbb{Q}(\zeta)$ where ζ is the root of a rational polynomial.

Introduction

• The ABC Conjecture can be generalized to number fields $\mathbb{Q}(\zeta)$ where ζ is the root of a rational polynomial.

Example (Dokchitser)

$$\zeta^2 - \zeta - 3 = 0 \Rightarrow \zeta = \frac{1 + \sqrt{13}}{2} \in \mathbb{Q}(\sqrt{13}),$$

then $\zeta + (\zeta + 1)^{10}(\zeta - 1) = 2^9(\zeta + 1)^5$

then
$$\underbrace{\zeta}_A + \underbrace{(\zeta+1)^{10}(\zeta-1)}_B = \underbrace{2^9(\zeta+1)^5}_C$$

This triple has algebraic ABC Ratio of 2.029.

Introduction

• The ABC Conjecture can be generalized to number fields $\mathbb{Q}(\zeta)$ where ζ is the root of a rational polynomial.

Example (Dokchitser)

$$\zeta^2 - \zeta - 3 = 0 \Rightarrow \zeta = \frac{1 + \sqrt{13}}{2} \in \mathbb{Q}(\sqrt{13}),$$
 then
$$\underbrace{\zeta}_{A} + \underbrace{(\zeta + 1)^{10}(\zeta - 1)}_{B} = \underbrace{2^9(\zeta + 1)^5}_{C}$$

This triple has algebraic ABC Ratio of 2.029.

• There are "interesting" surfaces in algebraic geometry with "special" points that correspond to algebraic numbers.

Introduction

• The ABC Conjecture can be generalized to number fields $\mathbb{Q}(\zeta)$ where ζ is the root of a rational polynomial.

Example (Dokchitser)

$$\begin{split} \zeta^2 - \zeta - 3 &= 0 \Rightarrow \zeta = \frac{1 + \sqrt{13}}{2} \in \mathbb{Q}(\sqrt{13}), \\ \text{then } \underbrace{\zeta}_A + \underbrace{(\zeta + 1)^{10}(\zeta - 1)}_E &= \underbrace{2^9(\zeta + 1)^5}_C \end{split}$$

This triple has algebraic ABC Ratio of 2.029.

- There are "interesting" surfaces in algebraic geometry with "special" points that correspond to algebraic numbers.
- The corresponding algebraic numbers satisfy $\alpha + \beta = \gamma$ and are usually smooth.

Introduction

• The ABC Conjecture can be generalized to number fields $\mathbb{Q}(\zeta)$ where ζ is the root of a rational polynomial.

Example (Dokchitser)

$$\begin{split} \zeta^2 - \zeta - 3 &= 0 \Rightarrow \zeta = \frac{1 + \sqrt{13}}{2} \in \mathbb{Q}(\sqrt{13}), \\ \text{then } \underbrace{\zeta}_A + \underbrace{(\zeta + 1)^{10}(\zeta - 1)}_B &= \underbrace{2^9(\zeta + 1)^5}_C \end{split}$$

This triple has algebraic ABC Ratio of 2.029.

- There are "interesting" surfaces in algebraic geometry with "special" points that correspond to algebraic numbers.
- The corresponding algebraic numbers satisfy $\alpha + \beta = \gamma$ and are usually smooth.
- I used some algorithms developed in my thesis to generate 350 of these examples and computed their algebraic ABC ratios.

• Points given in order of the degree of the defining polynomial.

- Points given in order of the degree of the defining polynomial.
- None of these "special" points correspond to a good ABC example.

- Points given in order of the degree of the defining polynomial.
- None of these "special" points correspond to a good ABC example.
- Data does follow a trend. Proof?

- Points given in order of the degree of the defining polynomial.
- None of these "special" points correspond to a good ABC example.
- Data does follow a trend. Proof? No idea how to even begin.

- Points given in order of the degree of the defining polynomial.
- None of these "special" points correspond to a good ABC example.
- Data does follow a trend. Proof? No idea how to even begin.
- Failure?

- Points given in order of the degree of the defining polynomial.
- None of these "special" points correspond to a good ABC example.
- Data does follow a trend. Proof? No idea how to even begin.
- Failure? Well, yes, but no.

The End?

Thanks!

More information: The ABC Conjecture Home Page http://www.math.unicaen.fr/~nitaj/abc.html

