The Problem	The Motivation	The Solution	End

Finding Minimal Polynomials with a Norm Calculator

Eric Errthum Winona State University eerrthum@winona.edu

October 18, 2008

向下 イヨト イヨト

The Problem ●○	The Motivation	The Solution	End
Algebraic Revie	ew .		

• An algebraic number, *ζ*, is a root of an irreducible monic polynomial with rational coefficients.

▲圖 → ▲ 国 → ▲ 国 →

The Problem ●○	The Motivation	The Solution	End
Algebraic R	eview		

 An algebraic number, ζ, is a root of an irreducible monic polynomial with rational coefficients.

Examples

$$\zeta = i \implies x^2 + 1 = 0$$

$$\zeta = \frac{4}{\sqrt{\sqrt[3]{9} + 7\sqrt[3]{3}}} \implies x^6 + \frac{504}{519}x^4 - \frac{2048}{519}$$

(1日) (日) (日)

The Problem ●○	The Motivation	The Solution	End

Algebraic Review

 An algebraic number, ζ, is a root of an irreducible monic polynomial with rational coefficients.

Examples

$$\begin{aligned} \zeta &= i \; \Rightarrow \; x^2 + 1 = 0 \\ \zeta &= \frac{4}{\sqrt{\sqrt[3]{9} + 7 \sqrt[3]{3}}} \; \Rightarrow \; x^6 + \frac{504}{519} x^4 - \frac{2048}{519} \end{aligned}$$

• This polynomial, $M_{\zeta}(x)$, is called the minimal polynomial and

$$M_{\zeta}(x) = \prod_{i} (x - \sigma_i(\zeta))$$

where $\sigma_i \in Gal(\mathbb{Q}(\zeta)/\mathbb{Q})$.

・日・ ・ヨ・ ・ヨ・

The Problem ●○	The Motivation	The Solution	End

Algebraic Review

 An algebraic number, ζ, is a root of an irreducible monic polynomial with rational coefficients.

Examples

$$\zeta = i \implies x^2 + 1 = 0$$

$$\zeta = \frac{4}{\sqrt{\sqrt[3]{9} + 7\sqrt[3]{3}}} \implies x^6 + \frac{504}{519}x^4 - \frac{2048}{519}$$

• This polynomial, $M_{\zeta}(x)$, is called the minimal polynomial and

$$M_{\zeta}(x) = \prod_{i} (x - \sigma_i(\zeta))$$

where $\sigma_i \in \text{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$.

• The (absolute) norm of ζ , norm $(\zeta) = |\prod \sigma_i(\zeta)|$, is the absolute value of the constant term of $M_{\zeta}(x)$.

The Problem ○●	The Motivation	The Solution	End
Problem State	ment		

Given

 A collection of unknown algbraic numbers {ζ₁, ζ₂,...} whose minimal polynomials have known degrees {d₁, d₂,...}.

向下 イヨト イヨト

The Problem	The Motivation	The Solution	End
00			

Problem Statement

Given

- A collection of unknown algbraic numbers {ζ₁, ζ₂,...} whose minimal polynomials have known degrees {d₁, d₂,...}.
- An algorithm that can compute the norm of an unknown algebraic number (norm calculator).

向下 イヨト イヨト

The Problem	The Motivation	The Solution	End
00			

Problem Statement

Given

- A collection of unknown algbraic numbers {ζ₁, ζ₂,...} whose minimal polynomials have known degrees {d₁, d₂,...}.
- An algorithm that can compute the norm of an unknown algebraic number (norm calculator).

Find

• The minimal polynomials for (at least some of) the ζ_k 's?

通 とう ほう うちょう

The Problem	The Motivation ●○○	The Solution	End
Shimura Cur	ves		

• The Shimura curve S_6 is a Riemannian surface of genus zero.

イロン イヨン イヨン イヨン

æ

The Problem	The Motivation ●○○	The Solution	End
Shimura Cu	rves		

- The Shimura curve S_6 is a Riemannian surface of genus zero.
- An isomorphism $J: S_6 \xrightarrow{\sim} \mathbb{P}^1$ exists.

・ 回 と く ヨ と く ヨ と

The Problem	The Motivation ●○○	The Solution	End
Shimura Cu	rves		

- The Shimura curve S_6 is a Riemannian surface of genus zero.
- An isomorphism $J: S_6 \xrightarrow{\sim} \mathbb{P}^1$ exists.
- It can be uniquely specified by choosing the three points that map to 0, 1, and $\infty.$

伺い イヨト イヨト

The Problem	The Motivation ●○○	The Solution	End
Shimura Cu	rves		

- The Shimura curve S_6 is a Riemannian surface of genus zero.
- An isomorphism $J: S_6 \xrightarrow{\sim} \mathbb{P}^1$ exists.
- It can be uniquely specified by choosing the three points that map to 0, 1, and $\infty.$
- Due to the properties of Shimura curves, no formula exists for such a map.

向下 イヨト イヨト

The Problem	The Motivation ○●○	The Solution	End

There is a collection of "special" points {s_k} ⊂ S₆ called complex multiplication (CM) points.

白 と く ヨ と く ヨ と

The Problem	The Motivation	The Solution	End
	000		

- There is a collection of "special" points {s_k} ⊂ S₆ called complex multiplication (CM) points.
- Three of these, *s*₃, *s*₄, and *s*₂₄, are *really* special, so specify *J* by

$$(s_3, s_4, s_{24}) \xrightarrow{J} (0, 1, \infty).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The Problem	The Motivation	The Solution	End
	000		

- There is a collection of "special" points {s_k} ⊂ S₆ called complex multiplication (CM) points.
- Three of these, *s*₃, *s*₄, and *s*₂₄, are *really* special, so specify *J* by

$$(s_3, s_4, s_{24}) \xrightarrow{J} (0, 1, \infty).$$

• Then J maps all CM points to algebraic numbers.

・ 同 ト ・ ヨ ト ・ ヨ ト

The Problem	The Motivation	The Solution	End
	000		

- There is a collection of "special" points {s_k} ⊂ S₆ called complex multiplication (CM) points.
- Three of these, *s*₃, *s*₄, and *s*₂₄, are *really* special, so specify *J* by

$$(s_3, s_4, s_{24}) \xrightarrow{J} (0, 1, \infty).$$

- Then J maps all CM points to algebraic numbers.
- There exists an algorithm that calculates norm $(J(s_k))$ for s_k a CM point. (Errthum, 2007)

(4月) イヨト イヨト

The Problem	The Motivation	The Solution	End
	000		

- There is a collection of "special" points {s_k} ⊂ S₆ called complex multiplication (CM) points.
- Three of these, *s*₃, *s*₄, and *s*₂₄, are *really* special, so specify *J* by

$$(s_3, s_4, s_{24}) \xrightarrow{J} (0, 1, \infty).$$

- Then J maps all CM points to algebraic numbers.
- There exists an algorithm that calculates norm $(J(s_k))$ for s_k a CM point. (Errthum, 2007)
- Using genus theory of groups, we can calculate d_k , the degree of $M_{J(s_k)}(x)$.

イロト イポト イヨト イヨト

The Problem	The Motivation	The Solution	End
	000		

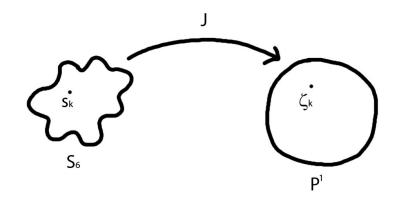
- There is a collection of "special" points {s_k} ⊂ S₆ called complex multiplication (CM) points.
- Three of these, *s*₃, *s*₄, and *s*₂₄, are *really* special, so specify *J* by

$$(s_3, s_4, s_{24}) \xrightarrow{J} (0, 1, \infty).$$

- Then J maps all CM points to algebraic numbers.
- There exists an algorithm that calculates norm $(J(s_k))$ for s_k a CM point. (Errthum, 2007)
- Using genus theory of groups, we can calculate d_k , the degree of $M_{J(s_k)}(x)$.

Back to the problem: Let $\{\zeta_k\} = \{J(s_k)\}$.

The Problem	The Motivation ○○●	The Solution	End
The Picture			



◆□ > ◆□ > ◆三 > ◆三 > 三 の へ @ >

The Problem	The Motivation	The Solution ●000	End
First Trick			

For a finite number of indices r, d_r = 1, i.e. ζ_r is a rational number.

・ロン ・回と ・ヨン ・ヨン

The Problem 00	The Motivation	The Solution ●○○○	End
First Trick			

• For a finite number of indices r, $d_r = 1$, i.e. ζ_r is a rational number.

۲ $\operatorname{norm}(\zeta_r) = \pm \zeta_r.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

The Problem 00	The Motivation	The Solution ●000	End

First Trick

۲

For a finite number of indices r, d_r = 1, i.e. ζ_r is a rational number.

$$\operatorname{norm}(\zeta_r) = \pm \zeta_r.$$

• Use a new J_1 by taking $(s_3, s_4, s_{24}) \rightarrow (1, 0, \infty)$ instead of $(0, 1, \infty).$ $J_1(s) = 1 - J(s).$

The Problem	The Motivation	The Solution ●000	End

First Trick

۲

For a finite number of indices r, d_r = 1, i.e. ζ_r is a rational number.

$$\operatorname{norm}(\zeta_r) = \pm \zeta_r.$$

• Use a new J_1 by taking $(s_3, s_4, s_{24}) \rightarrow (1, 0, \infty)$ instead of $(0, 1, \infty).$ $J_1(s) = 1 - J(s).$

Example

norm
$$(J(s_r)) = 4/5$$
 and norm $(1 - J(s_r)) = 9/5$
 $\Rightarrow \zeta_r = J(s_r) = -4/5$

・ロン ・回 と ・ ヨ と ・ ヨ と

The Problem	The Motivation	The Solution ●000	End

First Trick

۲

For a finite number of indices r, d_r = 1, i.e. ζ_r is a rational number.

$$\operatorname{norm}(\zeta_r) = \pm \zeta_r.$$

• Use a new J_1 by taking $(s_3, s_4, s_{24}) \rightarrow (1, 0, \infty)$ instead of $(0, 1, \infty).$ $J_1(s) = 1 - J(s).$

Example

norm
$$(J(s_r)) = 4/5$$
 and norm $(1 - J(s_r)) = 9/5$
 $\Rightarrow \zeta_r = J(s_r) = -4/5$

• Can calculate all rational ζ_r this way.

イロト イポト イラト イラト

The Problem 00	The Motivation	The Solution ○●○○	End
Second Trick			

• Choose ζ_k with d_k small.

・ロン ・四と ・ヨン ・ヨン

Э

The Problem	The Motivation	The Solution ○●○○	End
Second Trick			

- Choose ζ_k with d_k small.
- For $d_k + 1$ choices of r, specify $J_r(s) = \zeta_r J(s)$ by

$$(s_3, s_r, s_{24}) \xrightarrow{J_r} (\zeta_r, 0, \infty).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

The Problem	The Motivation	The Solution ○●○○	End

۲

- Choose ζ_k with d_k small.
- For $d_k + 1$ choices of r, specify $J_r(s) = \zeta_r J(s)$ by

$$(s_3, s_r, s_{24}) \xrightarrow{J_r} (\zeta_r, 0, \infty).$$

 $\operatorname{norm}(\zeta_r - J(s_k)) = \left| \prod_i \sigma_i (\zeta_r - J(s_k)) \right|$

▲圖▶ ▲屋▶ ▲屋▶

æ

The Problem 00	The Motivation	The Solution ○●○○	End

۲

- Choose ζ_k with d_k small.
- For $d_k + 1$ choices of r, specify $J_r(s) = \zeta_r J(s)$ by

$$(s_3, s_r, s_{24}) \xrightarrow{J_r} (\zeta_r, 0, \infty).$$

norm $(\zeta_r - J(s_k)) = \left| \prod_i \sigma_i (\zeta_r - J(s_k)) \right|$
$$= \left| \prod_i \sigma_i (\zeta_r - \zeta_k) \right|$$

イロン イ部ン イヨン イヨン 三日

The Problem	The Motivation	The Solution ○●○○	End

۲

- Choose ζ_k with d_k small.
- For $d_k + 1$ choices of r, specify $J_r(s) = \zeta_r J(s)$ by

$$(s_3, s_r, s_{24}) \xrightarrow{J_r} (\zeta_r, 0, \infty).$$

norm $(\zeta_r - J(s_k)) = \left| \prod_i \sigma_i (\zeta_r - J(s_k)) \right|$
$$= \left| \prod_i \sigma_i (\zeta_r - \zeta_k) \right|$$
$$= \left| \prod_i (\zeta_r - \sigma_i (\zeta_k)) \right|$$

イロン イボン イヨン イヨン 三日

The Problem 00	The Motivation	The Solution ○●○○	End

۲

- Choose ζ_k with d_k small.
- For $d_k + 1$ choices of r, specify $J_r(s) = \zeta_r J(s)$ by

$$(s_3, s_r, s_{24}) \xrightarrow{J_r} (\zeta_r, 0, \infty).$$

$$\operatorname{norm}(\zeta_r - J(s_k)) = \left| \prod_i \sigma_i(\zeta_r - J(s_k)) \right|$$

$$= \left| \prod_i \sigma_i(\zeta_r - \zeta_k) \right|$$

$$= \left| \prod_i (\zeta_r - \sigma_i(\zeta_k)) \right|$$

$$= \left| M_{\zeta_k}(\zeta_r) \right|$$

イロト イヨト イヨト イヨト

-

The Problem	The Motivation	The Solution ○○●○	End
Brute Force			

• So we know $d_k + 1$ points on the curve $y = |M_{\zeta_k}(x)|$.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

The Problem 00	The Motivation	The Solution ○○●○	End
Brute Force			

- So we know $d_k + 1$ points on the curve $y = |M_{\zeta_k}(x)|$.
- If it wasn't for the absolute value, we could use a standard polynomial fit and be done.

回 と く ヨ と く ヨ と

The Problem	The Motivation	The Solution ○○●○	End
Brute Force			

- So we know $d_k + 1$ points on the curve $y = |M_{\zeta_k}(x)|$.
- If it wasn't for the absolute value, we could use a standard polynomial fit and be done.
- Go through the 2^{dk} combinations of minus signs on the values until you find a monic polynomial. (There's only ever one. Proof?)

向下 イヨト イヨト

The Problem	The Motivation	The Solution ○○●○	End

• So we know $d_k + 1$ points on the curve $y = |M_{\zeta_k}(x)|$.

Brute Force

- If it wasn't for the absolute value, we could use a standard polynomial fit and be done.
- Go through the 2^{dk} combinations of minus signs on the values until you find a monic polynomial. (There's only ever one. Proof?)
- If there are R rational ζ_r, then we can use this method to find the minimal polynomial of any ζ_k with d_k ≤ R − 2.

イロト イポト イヨト イヨト

The Problem	The Motivation	The Solution ○○○●	End
Example			

• norm
$$(\zeta) = \frac{10}{17}$$
 and $d = 3$.

・ロト・(四ト・(川下・(日下・(日下)

The Problem 00	The Motivation	The Solution ○○○●	End
Example			

- norm $(\zeta) = \frac{10}{17}$ and d = 3.
- We use the four CM points that map to 0, 1, $\frac{-4}{5}$, and $\frac{2}{3}$ to find the data points:

向下 イヨト イヨト

The Problem	The Motivation	The Solution ○○○●	End
Example			

- norm $(\zeta) = \frac{10}{17}$ and d = 3.
- We use the four CM points that map to 0, 1, ⁻⁴/₅, and ²/₃ to find the data points:

$$(0, \operatorname{norm}(\zeta)) = (0, \frac{10}{17})$$
$$(1, \operatorname{norm}(1 - \zeta)) = (1, \frac{25}{102})$$
$$(\frac{-4}{5}, \operatorname{norm}(\frac{-4}{5} - \zeta)) = (\frac{-4}{5}, \frac{5246}{6375})$$
$$(\frac{2}{3}, \operatorname{norm}(\frac{2}{3} - \zeta)) = (\frac{2}{3}, \frac{104}{459})$$

伺 ト イヨト イヨト

The Problem 00	The Motivation	The Solution ○○○●	End

Example

• norm
$$(\zeta) = \frac{10}{17}$$
 and $d = 3$.

 We use the four CM points that map to 0, 1, ⁻⁴/₅, and ²/₃ to find the data points:

$$(0, \operatorname{norm}(\zeta)) = (0, \frac{10}{17})$$
$$(1, \operatorname{norm}(1 - \zeta)) = (1, \frac{25}{102})$$
$$(\frac{-4}{5}, \operatorname{norm}(\frac{-4}{5} - \zeta)) = (\frac{-4}{5}, \frac{5246}{6375})$$
$$(\frac{2}{3}, \operatorname{norm}(\frac{2}{3} - \zeta)) = (\frac{2}{3}, \frac{104}{459})$$

• Possible minimal polynomials:

y	=	$\frac{10}{17} - \frac{3316}{5049}x - \frac{1141}{10098}x^2 + \frac{718}{1683}x^3$
у	=	$\frac{10}{17} - \frac{124}{561}x - \frac{83}{374}x^2 - \frac{73}{187}x^3$
у	=	$\frac{10}{17} - \frac{812}{459}x - \frac{359}{918}x^2 + \frac{278}{153}x^3$
у	=	$\frac{10}{17} - \frac{4}{3}x - \frac{1}{2}x^2 + x^3$
у	=	$\frac{10}{17} - \frac{7}{51}x - \frac{24}{17}x^2 + \frac{41}{34}x^3$
у	=	$\frac{10}{17} + \frac{137}{459}x - \frac{698}{459}x^2 + \frac{7}{18}x^3$
у	=	$\frac{10}{17} - \frac{701}{561}x - \frac{316}{187}x^2 + \frac{971}{374}x^3$
у	=	$\frac{10}{17} - \frac{4109}{5049}x - \frac{9082}{5049}x^2 + \frac{5989}{3366}x^3$

伺 ト イヨト イヨト

The Problem 00	The Motivation	The Solution ○○○●	End

Example

٩	$norm(\zeta)$	=	$\frac{10}{17}$	and	<i>d</i> =	3.
---	---------------	---	-----------------	-----	------------	----

 We use the four CM points that map to 0, 1, ⁻⁴/₅, and ²/₃ to find the data points:

$$(0, \operatorname{norm}(\zeta)) = (0, \frac{10}{17})$$
$$(1, \operatorname{norm}(1 - \zeta)) = (1, \frac{25}{102})$$
$$(\frac{-4}{5}, \operatorname{norm}(\frac{-4}{5} - \zeta)) = (\frac{-4}{5}, \frac{5246}{6375})$$
$$(\frac{2}{3}, \operatorname{norm}(\frac{2}{3} - \zeta)) = (\frac{2}{3}, \frac{104}{459})$$

So the minimal polynomial of ζ is $M_{\zeta}(x) = \frac{10}{17} - \frac{4}{3}x - \frac{1}{2}x^2 + x^3$.

• Possible minimal polynomials:

$$y = \frac{10}{17} - \frac{3316}{5049}x - \frac{1141}{10098}x^2 + \frac{718}{1683}x^3$$

$$y = \frac{10}{17} - \frac{124}{561}x - \frac{83}{374}x^2 - \frac{73}{187}x^3$$

$$y = \frac{10}{17} - \frac{812}{459}x - \frac{3919}{918}x^2 + \frac{278}{153}x^3$$

$$y = \frac{10}{17} - \frac{4}{3}x - \frac{1}{2}x^2 + x^3$$

$$y = \frac{10}{17} - \frac{7}{51}x - \frac{24}{17}x^2 + \frac{41}{34}x^3$$

$$y = \frac{10}{17} - \frac{701}{561}x - \frac{316}{187}x^2 + \frac{971}{374}x^3$$

$$y = \frac{10}{17} - \frac{701}{561}x - \frac{316}{187}x^2 + \frac{972}{374}x^3$$

(3)

The Problem	The Motivation	The Solution	End
Thanks			

Questions?

eerrthum@winona.edu

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

æ