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Algebraic Review

An algebraic number, ζ, is a root of an irreducible monic
polynomial with rational coefficients.

Examples

ζ = i ⇒ x2 + 1 = 0

ζ =
4√

3
√

9 + 7 3
√

3
⇒ x6 +

504

519
x4 − 2048

519

This polynomial, Mζ(x), is called the minimal polynomial and

Mζ(x) =
∏
i

(x − σi (ζ))

where σi ∈ Gal(Q(ζ)/Q).
The (absolute) norm of ζ, norm(ζ) = |

∏
σi (ζ)|, is the

absolute value of the constant term of Mζ(x).
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Problem Statement

Given

A collection of unknown algbraic numbers {ζ1, ζ2, . . . } whose
minimal polynomials have known degrees {d1, d2, . . . }.

An algorithm that can compute the norm of an unknown
algebraic number (norm calculator).

Find

The minimal polynomials for (at least some of) the ζk ’s?
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Shimura Curves

The Shimura curve S6 is a Riemannian surface of genus zero.

An isomorphism J : S6
∼→ P1 exists.

It can be uniquely specified by choosing the three points that
map to 0, 1, and ∞.

Due to the properties of Shimura curves, no formula exists for
such a map.

Eric Errthum Finding Minimal Polynomials with a Norm Calculator



The Problem The Motivation The Solution End

Shimura Curves

The Shimura curve S6 is a Riemannian surface of genus zero.

An isomorphism J : S6
∼→ P1 exists.

It can be uniquely specified by choosing the three points that
map to 0, 1, and ∞.

Due to the properties of Shimura curves, no formula exists for
such a map.

Eric Errthum Finding Minimal Polynomials with a Norm Calculator



The Problem The Motivation The Solution End

Shimura Curves

The Shimura curve S6 is a Riemannian surface of genus zero.

An isomorphism J : S6
∼→ P1 exists.

It can be uniquely specified by choosing the three points that
map to 0, 1, and ∞.

Due to the properties of Shimura curves, no formula exists for
such a map.

Eric Errthum Finding Minimal Polynomials with a Norm Calculator



The Problem The Motivation The Solution End

Shimura Curves

The Shimura curve S6 is a Riemannian surface of genus zero.

An isomorphism J : S6
∼→ P1 exists.

It can be uniquely specified by choosing the three points that
map to 0, 1, and ∞.

Due to the properties of Shimura curves, no formula exists for
such a map.

Eric Errthum Finding Minimal Polynomials with a Norm Calculator



The Problem The Motivation The Solution End

CM Points on the Shimura Curve

There is a collection of “special” points {sk} ⊂ S6 called
complex multiplication (CM) points.

Three of these, s3, s4, and s24, are really special, so specify
J by

(s3, s4, s24)
J→ (0, 1,∞).

Then J maps all CM points to algebraic numbers.

There exists an algorithm that calculates norm(J(sk)) for sk a
CM point. (Errthum, 2007)

Using genus theory of groups, we can calculate dk , the degree
of MJ(sk )(x).

Back to the problem: Let {ζk} = {J(sk)}.
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The Picture
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First Trick

For a finite number of indices r , dr = 1, i.e. ζr is a rational
number.

norm(ζr ) = ±ζr .

Use a new J1 by taking (s3, s4, s24)→ (1, 0,∞) instead of
(0, 1,∞).

J1(s) = 1− J(s).

Example

norm(J(sr )) = 4/5 and norm(1− J(sr )) = 9/5

⇒ ζr = J(sr ) = −4/5

Can calculate all rational ζr this way.
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Second Trick

Choose ζk with dk small.

For dk + 1 choices of r , specify Jr (s) = ζr − J(s) by

(s3, sr , s24)
Jr→ (ζr , 0,∞).

norm(ζr − J(sk)) =

∣∣∣∣∣∏
i

σi (ζr − J(sk))

∣∣∣∣∣
=

∣∣∣∣∣∏
i

σi (ζr − ζk)

∣∣∣∣∣
=

∣∣∣∣∣∏
i

(ζr − σi (ζk))

∣∣∣∣∣
= |Mζk

(ζr )|
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Brute Force

So we know dk + 1 points on the curve y = |Mζk
(x)|.

If it wasn’t for the absolute value, we could use a standard
polynomial fit and be done.

Go through the 2dk combinations of minus signs on the values
until you find a monic polynomial.
(There’s only ever one. Proof?)

If there are R rational ζr , then we can use this method to find
the minimal polynomial of any ζk with dk ≤ R − 2.
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Example

norm(ζ) = 10
17 and d = 3.

We use the four CM points that
map to 0, 1, −4

5 , and 2
3 to find

the data points:

(0, norm(ζ)) =
(
0, 10

17

)
(1, norm (1− ζ)) =

(
1, 25

102

)(−4
5 , norm

(−4
5 − ζ

))
=
(−4

5 ,
5246
6375

)(
2
3 , norm

(
2
3 − ζ

))
=
(

2
3 ,

104
459

)

Possible minimal polynomials:

y =
10

17
−

3316

5049
x −

1141

10098
x2 +

718

1683
x3

y =
10

17
−

124

561
x −

83

374
x2 −

73

187
x3

y =
10

17
−

812

459
x −

359

918
x2 +

278

153
x3

y =
10

17
−

4

3
x −

1

2
x2 + x3

y =
10

17
−

7

51
x −

24

17
x2 +

41

34
x3

y =
10

17
+

137

459
x −

698

459
x2 +

7

18
x3

y =
10

17
−

701

561
x −

316

187
x2 +

971

374
x3

y =
10

17
−

4109

5049
x −

9082

5049
x2 +

5989

3366
x3

So the minimal polynomial of ζ is Mζ(x) = 10
17 −

4
3x − 1

2x2 + x3.

Eric Errthum Finding Minimal Polynomials with a Norm Calculator



The Problem The Motivation The Solution End

Example

norm(ζ) = 10
17 and d = 3.

We use the four CM points that
map to 0, 1, −4

5 , and 2
3 to find

the data points:

(0, norm(ζ)) =
(
0, 10

17

)
(1, norm (1− ζ)) =

(
1, 25

102

)(−4
5 , norm

(−4
5 − ζ

))
=
(−4

5 ,
5246
6375

)(
2
3 , norm

(
2
3 − ζ

))
=
(

2
3 ,

104
459

)

Possible minimal polynomials:

y =
10

17
−

3316

5049
x −

1141

10098
x2 +

718

1683
x3

y =
10

17
−

124

561
x −

83

374
x2 −

73

187
x3

y =
10

17
−

812

459
x −

359

918
x2 +

278

153
x3

y =
10

17
−

4

3
x −

1

2
x2 + x3

y =
10

17
−

7

51
x −

24

17
x2 +

41

34
x3

y =
10

17
+

137

459
x −

698

459
x2 +

7

18
x3

y =
10

17
−

701

561
x −

316

187
x2 +

971

374
x3

y =
10

17
−

4109

5049
x −

9082

5049
x2 +

5989

3366
x3

So the minimal polynomial of ζ is Mζ(x) = 10
17 −

4
3x − 1

2x2 + x3.

Eric Errthum Finding Minimal Polynomials with a Norm Calculator



The Problem The Motivation The Solution End

Example

norm(ζ) = 10
17 and d = 3.

We use the four CM points that
map to 0, 1, −4

5 , and 2
3 to find

the data points:
(0, norm(ζ)) =

(
0, 10

17

)
(1, norm (1− ζ)) =

(
1, 25

102

)(−4
5 , norm

(−4
5 − ζ

))
=
(−4

5 ,
5246
6375

)(
2
3 , norm

(
2
3 − ζ

))
=
(

2
3 ,

104
459

)

Possible minimal polynomials:

y =
10

17
−

3316

5049
x −

1141

10098
x2 +

718

1683
x3

y =
10

17
−

124

561
x −

83

374
x2 −

73

187
x3

y =
10

17
−

812

459
x −

359

918
x2 +

278

153
x3

y =
10

17
−

4

3
x −

1

2
x2 + x3

y =
10

17
−

7

51
x −

24

17
x2 +

41

34
x3

y =
10

17
+

137

459
x −

698

459
x2 +

7

18
x3

y =
10

17
−

701

561
x −

316

187
x2 +

971

374
x3

y =
10

17
−

4109

5049
x −

9082

5049
x2 +

5989

3366
x3

So the minimal polynomial of ζ is Mζ(x) = 10
17 −

4
3x − 1

2x2 + x3.

Eric Errthum Finding Minimal Polynomials with a Norm Calculator



The Problem The Motivation The Solution End

Example

norm(ζ) = 10
17 and d = 3.

We use the four CM points that
map to 0, 1, −4

5 , and 2
3 to find

the data points:
(0, norm(ζ)) =

(
0, 10

17

)
(1, norm (1− ζ)) =

(
1, 25

102

)(−4
5 , norm

(−4
5 − ζ

))
=
(−4

5 ,
5246
6375

)(
2
3 , norm

(
2
3 − ζ

))
=
(

2
3 ,

104
459

)

Possible minimal polynomials:

y =
10

17
−

3316

5049
x −

1141

10098
x2 +

718

1683
x3

y =
10

17
−

124

561
x −

83

374
x2 −

73

187
x3

y =
10

17
−

812

459
x −

359

918
x2 +

278

153
x3

y =
10

17
−

4

3
x −

1

2
x2 + x3

y =
10

17
−

7

51
x −

24

17
x2 +

41

34
x3

y =
10

17
+

137

459
x −

698

459
x2 +

7

18
x3

y =
10

17
−

701

561
x −

316

187
x2 +

971

374
x3

y =
10

17
−

4109

5049
x −

9082

5049
x2 +

5989

3366
x3

So the minimal polynomial of ζ is Mζ(x) = 10
17 −

4
3x − 1

2x2 + x3.
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Example

norm(ζ) = 10
17 and d = 3.

We use the four CM points that
map to 0, 1, −4

5 , and 2
3 to find

the data points:
(0, norm(ζ)) =

(
0, 10

17

)
(1, norm (1− ζ)) =

(
1, 25

102

)(−4
5 , norm

(−4
5 − ζ

))
=
(−4

5 ,
5246
6375

)(
2
3 , norm

(
2
3 − ζ

))
=
(

2
3 ,

104
459

)

Possible minimal polynomials:

y =
10

17
−

3316

5049
x −

1141

10098
x2 +

718

1683
x3

y =
10

17
−

124

561
x −

83

374
x2 −

73

187
x3

y =
10

17
−

812

459
x −

359

918
x2 +

278

153
x3

y =
10

17
−

4

3
x −

1

2
x2 + x3

y =
10

17
−

7

51
x −

24

17
x2 +

41

34
x3

y =
10

17
+

137

459
x −

698

459
x2 +

7

18
x3

y =
10

17
−

701

561
x −

316

187
x2 +

971

374
x3

y =
10

17
−

4109

5049
x −

9082

5049
x2 +

5989

3366
x3

So the minimal polynomial of ζ is Mζ(x) = 10
17 −

4
3x − 1

2x2 + x3.

Eric Errthum Finding Minimal Polynomials with a Norm Calculator



The Problem The Motivation The Solution End

Thanks

Questions?

eerrthum@winona.edu
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