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Classical Set-Up

o GL»(R) acts on h*, the union of the upper and
lower half-planes:

a b _ar+b
c d 7-_(:7'+d'
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Modular Curve
©000

Classical Set-Up

o GL»(R) acts on h*, the union of the upper and
lower half-planes:

a b _ar+b 2
c d T= cr+d’ 1.75 |

o Consider the Riemann surface GLy(Z)\b™. 123
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©000

Classical Set-Up

o GL»(R) acts on h*, the union of the upper and
lower half-planes:

a b at + b o
c d CT+d 1.75 |
o Consider the Riemann surface GLy(Z)\b™. 1as |
e Compactify to obtain A7 — ey
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Modular Curve
©000

Classical Set-Up

o GL»(R) acts on h*, the union of the upper and
lower half-planes:

a b at + b &

c d cT+d e
o Consider the Riemann surface GLy(Z)\b™. 123
e Compactify to obtain A7 | N
@ It has genus 0, so there is an isomorphism e

joar S pt
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Modular Curve
©000

Classical Set-Up

o GL»(R) acts on h*, the union of the upper and
lower half-planes:

a b ar +b Oo

c d ct +d 173
o Consider the Riemann surface GLy(Z)\b™. 123
e Compactify to obtain A7 —PTs
@ It has genus 0, so there is an isomorphism £l= i / O"-\

joar S pt
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Modular Curve
©000

Classical Set-Up

GLo(R) acts on hT, the union of the upper and
lower half-planes:

a b _ar+b 2

c d T_CT—FC/. 1.75 |
Consider the Riemann surface GLo(Z)\b™.
Compactify to obtain AX7".

It has genus 0, so there is an isomorphism

joar S pt

o j(r) =1/q+ 744 + 196884q + ... € Z[[q]]
where q = €277, (Gauss, Dedekind, Klein, etc.)
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Modular Curve
©000

Classical Set-Up

GLo(R) acts on hT, the union of the upper and
lower half-planes:

a b at + b oo

c d CT+d 1.75 |
o Consider the Riemann surface GLy(Z)\b™. 1as |
e Compactify to obtain A7 —~ ) -
@ It has genus 0, so there is an isomorphism & o ;__17_8\

joar S pt

o j(r) =1/q+ 744 + 196884q + ... € Z[[q]]
where q = €277, (Gauss, Dedekind, Klein, etc.)
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Modular Curve
0e00

Complex Multiplication Points

@ Let £ be the space of isomorphism classes of elliptic curves.
Then,
X &
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Modular Curve
0e00

Complex Multiplication Points

@ Let £ be the space of isomorphism classes of elliptic curves.
Then,
X &

Definition

If 7 is associated with an elliptic curve with Complex
Multiplication, 7 is called a CM-point.
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Modular Curve
0e00

Complex Multiplication Points

@ Let £ be the space of isomorphism classes of elliptic curves.
Then,
X &

Definition

If 7 is associated with an elliptic curve with Complex
Multiplication, 7 is called a CM-point.

@ A CM-point 7 is the solution to an integral quadratic equation
with negative discriminant A.
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Modular Curve
[eYe] Yo

Singular Moduli

Definition

If 7 is @ CM point, j(7a) is called a singular modulus.
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Modular Curve
[eYe] Yo

Singular Moduli

Definition

If 7 is @ CM point, j(7a) is called a singular modulus.

Singular moduli are algebraic integers.
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Modular Curve
[eYe] Yo

Singular Moduli

Definition

If 7 is @ CM point, j(7a) is called a singular modulus.

Singular moduli are algebraic integers.

J (HF) — 0, j(V=5) = 23(25 + 13V/5)3
J(V=6) = 1231 + V2)X(5 + 2v2)?
J/=18)= 23<323+228f+(231+161\f) f_1>3

<
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Modular Curve
ocooe

Gross-Zagier Theorem

@ Since a singular modulus is an algebraic integer, it has rational
norm in Z.
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Modular Curve
ocooe

Gross-Zagier Theorem

@ Since a singular modulus is an algebraic integer, it has rational
norm in Z.

Theorem (B. Gross and D. Zagier, 1985)

i(ray) =il = I[  »°

nEN(Al,Ag)

where n, e(n) € Z, N(A1,A2) C Z can all be defined explicitly.
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Modular Curve
ocooe

Gross-Zagier Theorem

@ Since a singular modulus is an algebraic integer, it has rational
norm in Z.

Theorem (B. Gross and D. Zagier, 1985)

i(ra) —J(ra)l = [ ™

nEN(Al,Ag)

where n, e(n) € Z, N(A1,A2) C Z can all be defined explicitly.

@ Recall j (1+\2/?3) =0and (\/—1) =123

Eric Errthum Singular Moduli of Shimura Curves



Modular Curve
ocooe

Gross-Zagier Theorem

Table 1. Factorizations af b

i(v=5)] = 2?5°11°
| i(V=6)] = 2V3°17°
j(vV—14)| = 2*11°173%413
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Modular Curve
ocooe

Gross-Zagier Theorem

@ Since a singular modulus is an algebraic integer, it has rational
norm in Z.

Theorem (B. Gross and D. Zagier, 1985)

i(ra) —J(ra)l = [ ™

nEN(Al,Ag)

where n, e(n) € Z, N(A1,A2) C Z can all be defined explicitly.
@ Recall j (HF) =0andj(v-1) =123

@ The factorization is a lot of small primes to large powers.
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©0000

Quaternion Algebras
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Shimura Curve
©0000

Quaternion Algebras

Definition

A quaternion algebra B is given by Q(a, 3) where o = a, %> = b
and aff = —fa.
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Shimura Curve
©0000

Quaternion Algebras

Definition

A quaternion algebra B is given by Q(a, 3) where o = a, %> = b
and aff = —fa.

Hamiltonians where a = b = —1.
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Shimura Curve
©0000

Quaternion Algebras

Definition

A quaternion algebra B is given by Q(a, 3) where o = a, %> = b
and aff = —fa.

Hamiltonians where a = b = —1.

For our purposes, we only care about indefinite quaternion algebras.
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Shimura Curve
©0000

Quaternion Algebras

Definition

A quaternion algebra B is given by Q(a, 3) where o = a, %> = b
and aff = —fa.

Hamiltonians where a = b = —1.

For our purposes, we only care about indefinite quaternion algebras.

Bs where a =5, b =6.
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Shimura Curve
©0000

Quaternion Algebras

Definition

A quaternion algebra B is given by Q(a, 3) where o = a, %> = b
and aff = —fa.

Hamiltonians where a = b = —1.

For our purposes, we only care about indefinite quaternion algebras.

Bs where a =5, b =6.

@ There is an embedding B — M,(Q(v/b)) via
0 a 3 Vb 0
o — 10/ — 0 —\/E

Eric Errthum Singular Moduli of Shimura Curves




Shimura Curve
0@000

Maximal Orders

Definition
An order O is an integral ideal that is a ring. In addition,
O®Q=8B.
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Shimura Curve
0@000

Maximal Orders

An order O is an integral ideal that is a ring. In addition,
O®Q=8B.

Definition

| A

An maximal order is one that cannot be properly contained in a
larger order.
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Shimura Curve
0@000

Maximal Orders

An order O is an integral ideal that is a ring. In addition,
O®Q=8B.

Definition

| A

An maximal order is one that cannot be properly contained in a
larger order.

A\

M3 (Z) C M2(Q) is a maximal order.
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Shimura Curve
0@000

Maximal Orders

An order O is an integral ideal that is a ring. In addition,
O®Q=8B.

Definition

An maximal order is one that cannot be properly contained in a
larger order.

M3 (Z) C M2(Q) is a maximal order.

Z[1, o, B, a5 in Bg.
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Shimura Curve
0@000

Maximal Orders

An order O is an integral ideal that is a ring. In addition,
O®Q=8B.

Definition

An maximal order is one that cannot be properly contained in a
larger order.

M3 (Z) C M2(Q) is a maximal order.

Z[l,a,ﬂ, Ozﬁ] CcZ [1’ 4agcxﬁ’ 5—3a+2a8 40&+5,3—a,8} in Be.

10 ) 10
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Shimura Curve
[eJe] Yolo)

Shimura Curve

Modular Curve Shimura Curve
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Shimura Curve
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Shimura Curve

Modular Curve Shimura Curve

o GLy(R) action o B} < GL2(Q(VD)) action
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Shimura Curve
[eJe] Yolo)

Shimura Curve

Modular Curve Shimura Curve
e GL»(R) action o B} < GL2(Q(VD)) action
o X = (GLa(Z)\*)* o Xp=Np (O)\b*
M2(Z) max order O max order
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Shimura Curve
[eJe] Yolo)

Shimura Curve

Modular Curve Shimura Curve
e GL»(R) action o B} < GL2(Q(VD)) action
o X7 = (GLa(2)\b*)* o Xp=Np: (O)\b*
M2(Z) max order O max order
o j: X 5Pl o tp: X} — P!
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Shimura Curve
[eJe] Yolo)

Shimura Curve

Modular Curve Shimura Curve
e GL»(R) action o B} < GL2(Q(VD)) action
o X7 = (GLo(Z)\b*)" o X =Ny (O)\b*
M2(Z) max order O max order
° j: X 5P o tp: X} = P!
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Shimura Curve
[eJe] Yolo)

Shimura Curve

Modular Curve Shimura Curve

e GL»(R) action B} — GL2(Q(V/D)) action
o X7 = (GLa(Z)\W2)* X5 = Ng (O)\*
M2(Z) max order O max order
° A S P! tp: Xp = Pl
@ j=1/q+ 744 + ... at 0o cusp @ No cusps, so no q expansion
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Shimura Curve
[eJe] Yolo)

Shimura Curve

Modular Curve Shimura Curve
e GL»(R) action B} — GL2(Q(V/D)) action

o X = (GLa(Z)\1E)" X = Ng: (O)\b*
M2(Z) max order O max order

o j: X 5P o tp: X} = P!
@ j=1/q+ 744 + ... at 0o cusp @ No cusps, so no q expansion
e CM Points o CM points
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Shimura Curve
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Shimura Curve

Modular Curve Shimura Curve

e GLy(R) action e Bj — GL2(Q(v/D)) action
o X7 = (GLa(Z)\W2)* o X =Ny (O)\b*

M2(Z) max order O max order
° j: X 5P o tp: X} = P!
e j=1/q+ 744 + ... at co cusp @ No cusps, so no q expansion
e CM Points o CM points
@ j(7a) algebraic integer e tp(7Ta) algebraic
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Shimura Curve
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Shimura Curve

Modular Curve Shimura Curve

e GLy(R) action e Bj — GL2(Q(v/D)) action
o Xi = (GLo(Z)\p®)* o Xj =Ny (0)\b*

M2(Z) max order O max order
° j: X 5P o tp: X} = P!
e j=1/q+ 744 + ... at co cusp @ No cusps, so no q expansion
e CM Points o CM points
@ j(7a) algebraic integer e tp(7Ta) algebraic
@ Gross-Zagier Factorization of @ No known Gross-Zagier formula

the Norm
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Shimura Curve
[eJe] Yolo)

Shimura Curve

Modular Curve Shimura Curve

e GLy(R) action e Bj — GL2(Q(v/D)) action
o Xi = (GLo(Z)\p®)* o Xj =Ny (0)\b*

M2(Z) max order O max order
° j: X 5P o tp: X} = P!
e j=1/q+ 744 + ... at co cusp @ No cusps, so no q expansion
e CM Points o CM points
@ j(7a) algebraic integer e tp(7Ta) algebraic
@ Gross-Zagier Factorization of @ No known Gross-Zagier formula

the Norm
Goal: Compute |tp(7a)| for D > 1.
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Shimura Curve
0000

Elkies’s Attempt

Eric Errthum Singular Moduli of Shimura Curves



Shimura Curve
0000

Elkies’s Attempt

@ Consider the rational CM points on Ag.
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Shimura Curve
0000

Elkies’s Attempt

@ Consider the rational CM points on Ag.
@ To specify a map tg : XZ — P!, need only give its
zeros and poles and a normalization.
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Shimura Curve
0000

Elkies’s Attempt

@ Consider the rational CM points on Ag.

@ To specify a map tg : XZ — P!, need only give its
zeros and poles and a normalization.

@ In this case the image of NB6X (O) — PGLy is a
triangle group.
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Shimura Curve
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Elkies’s Attempt

@ Consider the rational CM points on Ag.

@ To specify a map tg : XZ — P!, need only give its
zeros and poles and a normalization.

@ In this case the image of NB6X (O) — PGLy is a
triangle group.
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Shimura Curve
0000

Elkies’s Attempt

@ Consider the rational CM points on Ag.
@ To specify a map tg : XZ — P!, need only give its
zeros and poles and a normalization. e
@ In this case the image of NB6X (O) — PGLy is a
triangle group. 0
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Shimura Curve
0000

Elkies’s Attempt

@ Consider the rational CM points on Ag.
@ To specify a map tg : XZ — P!, need only give its
zeros and poles and a normalization. e
@ In this case the image of NBSX (O) — PGLy is a
triangle group. 0
o Elkies (1998) uses geometric involutions on the
covering curves XZ(N).
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Shimura Curve
0000e

Elkies's Results

o Elkies is successful at algebraically determining the
coordinates for 17 of the 27 rational CM points.
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Shimura Curve
0000e

Elkies's Results

o Elkies is successful at algebraically determining the
coordinates for 17 of the 27 rational CM points.

@ Unable to prove the remaining 10 CM points, but
makes numerical approximations and then
recognizes them as rational numbers.
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Shimura Curve
0000e

Elkies's Results

o Elkies is successful at algebraically determining the
coordinates for 17 of the 27 rational CM points.

@ Unable to prove the remaining 10 CM points, but
makes numerical approximations and then
recognizes them as rational numbers.

e Small primes to large powers.

Eric Errthum Singular Moduli of Shimura Curves



Shimura Curve
0000e

Elkies's Results

o Elkies is successful at algebraically determining the
coordinates for 17 of the 27 rational CM points.

@ Unable to prove the remaining 10 CM points, but
makes numerical approximations and then
recognizes them as rational numbers.

e Small primes to large powers.
o Further recognize through standard
transformations
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Elkies's Results

o Elkies is successful at algebraically determining the
coordinates for 17 of the 27 rational CM points.

@ Unable to prove the remaining 10 CM points, but
makes numerical approximations and then
recognizes them as rational numbers.

e Small primes to large powers.
o Further recognize through standard
transformations
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Shimura Curve
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Elkies's Results

o Elkies is successful at algebraically determining the
coordinates for 17 of the 27 rational CM points.

@ Unable to prove the remaining 10 CM points, but
makes numerical approximations and then
recognizes them as rational numbers.

e Small primes to large powers.
o Further recognize through standard
transformations
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Shimura Curve
0000e

Elkies's Results

o Elkies is successful at algebraically determining the
coordinates for 17 of the 27 rational CM points.
@ Unable to prove the remaining 10 CM points, but
makes numerical approximations and then
recognizes them as rational numbers. i
e Small primes to large powers.
o Further recognize through standard
transformations
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Shimura Curve
0000e

Elkies's Results

o Elkies is successful at algebraically determining the
coordinates for 17 of the 27 rational CM points.
@ Unable to prove the remaining 10 CM points, but
makes numerical approximations and then
recognizes them as rational numbers. i
e Small primes to large powers.
o Further recognize through standard
transformations, i.e. |1 — tg(7a)| should also be
small primes to large powers.
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Shimura Curve
0000e

Elkies's Results

Coordinates of Rational CM Points on X"

A Numerator Denominator
7 3
—40 g ; 56 Coordinates of Rational CM Points on Xﬁ)
—52 2 ? 510 A Numerator Denominator
—19 3 2 20 33 1
—84 —227? 33
_88 3774 50113 3 2
—72 5 3.7
—100 2437745 118 —120 33 )
—120 7* 3353
—132 24112 50 o7 963 52
_ 6
—168 —7%114 56 35 2 7
—43 3774 21056
1
—51 —7* 210 180 5. 113 132
—75 14 210335
—312 7423* 50116
—147 —11%23* 21033567

f Shimura Curves

Errthum Singular Mod




Shimura Curve
0000e

Elkies's Results

o Elkies is successful at algebraically determining the
coordinates for 17 of the 27 rational CM points.
@ Unable to prove the remaining 10 CM points, but
makes numerical approximations and then
recognizes them as rational numbers. i
e Small primes to large powers.
o Further recognize through standard
transformations, i.e. |1 — tg(7a)| should also be
small primes to large powers.

» 31174104234
te(7_163) =

- 210567116176°
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Borcherds Forms
©000000

Vector-valued Modular Forms

Definition

Suppose p is a representation of [ on a finite dimensional complex
vector space V. Then F : b= — V is a vector-valued modular form
on [ of weight k and type p if it satsifies, for all v € T,

F(y7) = (v, 7)*p(v)F(7)
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Borcherds Forms
©000000

Vector-valued Modular Forms

Definition

Suppose p is a representation of [ on a finite dimensional complex
vector space V. Then F : b= — V is a vector-valued modular form
on [ of weight k and type p if it satsifies, for all v € T,

F(y7) = (v, 7)*p(v)F(7)

Theorem

Let L be a lattice with inner product and {e\} a basis of C[L/L].
Suppose f is a scalar-valued weight k modular form on ['o(N) with
character x . Then

Fe(r)= " > (v Heo.

v€Fo(N)\SL2(Z)

is a modular form of weight k and type p;, the Weil representation.
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Borcherds Forms
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Borcherds Forms

Definition

Borcherds Form: Given a lattice L with an inner product and a
modular form F : h* — C[L"/L], Borcherds (1998) constructed

W(F): x5 — P!
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Borcherds Forms
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Borcherds Forms

Definition
Borcherds Form: Given a lattice L with an inner product and a
modular form F : h* — C[L"/L], Borcherds (1998) constructed

W(F): x5 — P!

In reality:

e W(F) is a weight k modular form on X}, where k is
determined by properties of F. So we just make sure it has
weight 0.

e W(F) is a regularized theta lift
@ W(F) is highly incomputable
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Properties of Borcherds Forms

If F has Fourier expansion

= ) D almaTe

XELV/L meQ

then
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Borcherds Forms
fJe] Yelolele)

Properties of Borcherds Forms

If F has Fourier expansion

= ) D almaTe

XELV/L meQ

then
@ The weight of V(F) is cp(0).
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Borcherds Forms
fJe] Yelolele)

Properties of Borcherds Forms

If F has Fourier expansion

= ) D almaTe

XELV/L meQ

then
@ The weight of V(F) is cp(0).
e The divisor of W(F) is given by

div(V )—ZZCA (=m, )

A m<0

where the Z(—m, \) are rational quadratic divisors.
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Borcherds Forms
000@000

Borcherds Forms at CM Points

Theorem (J. Schofer, 2005)

> logl[W(F) Z > ax(m)ra(m (1)

Galois Orbit )\E LV/L m<0
of a CM Point

where k)(m) are computable coefficients of the incoherent
Eisenstein series associated to the lattice.
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Borcherds Forms at CM Points

Theorem (J. Schofer, 2005)

> log|lw(F H* Z Y almea(m) (1)

Galois Orbit )\E LV/L m<0
of a CM Point

where k)(m) are computable coefficients of the incoherent
Eisenstein series associated to the lattice.

Corollary (J. Schofer, 2005)
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Borcherds Forms at CM Points

Theorem (J. Schofer, 2005)

> log|lw(F H* Z Y almea(m) (1)

Galois Orbit )\E LV/L m<0
of a CM Point

where k)(m) are computable coefficients of the incoherent
Eisenstein series associated to the lattice.

Corollary (J. Schofer, 2005)

i. The right side is a bunch of small primes to large powers.
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Borcherds Forms
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Borcherds Forms at CM Points

Theorem (J. Schofer, 2005)

> legllV(A)l = 12A ST Y amm(m) (1)

Galois Orbit )\E LV/L m<0
of a CM Point

where k)(m) are computable coefficients of the incoherent
Eisenstein series associated to the lattice.

Corollary (J. Schofer, 2005)

i. The right side is a bunch of small primes to large powers.
ii. The map j = V(Fy) for some Fy and (with some work)
Gross-Zagier follows from (1).
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Borcherds Forms at CM Points

Theorem (J. Schofer, 2005)

> legllV(A)l = 12A ST Y amm(m) (1)

Galois Orbit )\E LV/L m<0
of a CM Point

where k)(m) are computable coefficients of the incoherent
Eisenstein series associated to the lattice.

Corollary (J. Schofer, 2005

i. The right side is a bunch of small primes to large powers.
ii. The map j = V(Fy) for some Fy and (with some work)
Gross-Zagier follows from (1).

—~
~—

Theorem (Errthum, 2007)

The map tg is a Borcherds form.
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Borcherds Forms
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Borcherds Forms at CM Points

Theorem (J. Schofer, 2005)

> log|lw(F H* Z Y almea(m) (1)

Galois Orbit )\E LV/L m<0
of a CM Point

where k)(m) are computable coefficients of the incoherent
Eisenstein series associated to the lattice.

Corollary (J. Schofer, 2005

i. The right side is a bunch of small primes to large powers.
ii. The map j = V(Fy) for some Fy and (with some work)
Gross-Zagier follows from (1).

—~
~—

Theorem (Errthum, 2007)
The map tg is a Borcherds form. And so is tig.
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Borcherds Forms
0000000

The map ts as a Borcherds Form

@ Through the vectorization process, the scalar-valued o(12)
modular form

2 2
P U S S

s AT TN

where 1, = n(mT) gives rise to Fg, a vector-valued modular
form
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Borcherds Forms
0000000

The map ts as a Borcherds Form

@ Through the vectorization process, the scalar-valued o(12)
modular form

2 2
P U S S

s AT TN

where 1, = n(mT) gives rise to Fg, a vector-valued modular

form with
div(V(Fs)) = div(te)
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Borcherds Forms
0000000

The map ts as a Borcherds Form

@ Through the vectorization process, the scalar-valued o(12)
modular form

2 2
P U S S

s AT TN

where 1, = n(mT) gives rise to Fg, a vector-valued modular
form with
div(V(Fg)) = div(ts)

@ This implies there exists a nonzero constant kg such that

W(F@) = k6t6.

Eric Errthum Singular Moduli of Shimura Curves



Borcherds Forms
0000000

Normalization
S logl|W(Fe. 7|l = |24 S amma(m)
og 6,7 = 5d(Bs) co(m)rx(m
Galois Orbit AeLV/L m<0

of T_24

Eric Errthum Singular Moduli of Shimura Curves



Borcherds Forms
0000000

Normalization

> logllV(Fer) = 2SS c(mima(m)

Galois Orbit AeLV/L m<0
OfT_24
| 224
g [W(Fs. 720l = oy S0 ex(mhma(m)
xelV/L m<0
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Normalization

> logllV(Fer) = 2SS c(mima(m)

Galois Orbit AeLV/L m<0
OfT_24
| 224
g [W(Fs. 720l = oy S0 ex(mhma(m)
xelV/L m<0

log | ks " ts(7—24)l|
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Normalization
S logl|W(Fe. 7|l = |24 S amma(m)
og 6,7 = 5d(Bs) co(m)rx(m
Galois Orbit AeLV/L m<0
OfT_24
log ||V (Fe, T—24)|| = |Z-24] > am)ra(m)
g 6y 71—-24 2d(55) A A
AELY/L m<0
log || ks ‘t6(—24)I| = 6log(6)
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Normalization
S logl|W(Fe. 7|l = |24 S amma(m)
og 6,7 = 5d(Bs) co(m)rx(m
Galois Orbit AeLV/L m<0
OfT_24
log ||V (Fe, T—24)|| = |Z-24] > am)ra(m)
g 6y 71—-24 2d(55) A A
AELY/L m<0
log || ks ‘t6(—24)I| = 6log(6)

e By definition, tg(7_24) = 1.
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Normalization

> logllV(Fer) = 2SS c(mima(m)

Galois Orbit AeLV/L m<0
OfT_24
log ||V (Fe, T—24)|| = |Z-24] > am)ra(m)
g 6,71-24 2d(BG) A A
AELY/L m<0
log || ks ‘t6(—24)I| = 6log(6)

e By definition, tg(7_24) = 1.

Theorem (Errthum, 2007)
te = :|:6_6\U(F6)
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Normalization

> logllV(Fer) = 2SS c(mima(m)

Galois Orbit AeLV/L m<0
OfT_24
log ||V (Fe, T—24)|| = |Z-24] > am)ra(m)
g 6,71-24 2d(BG) A A
AELY/L m<0
log || ks ‘t6(—24)I| = 6log(6)

e By definition, tg(7_24) = 1.

Theorem (Errthum, 2007)

te = :|:6_6\U(F6)
tip = :|:2_2\|/(F10)
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Normalization

> logllV(Fer) = 2SS c(mima(m)

Galois Orbit AeLV/L m<0
OfT_24
log ||V (Fe, T—24)|| = |Z-24] > am)ra(m)
g 6,71-24 2d(BG) A A
AELY/L m<0
log || ks ‘t6(—24)I| = 6log(6)

e By definition, tg(7_24) = 1.

Theorem (Errthum, 2007)

te = 6_6\U(F6)
tip = 2_2\|/(F10)
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Computing |t5(7a)|

Z
3" tog lts(r)ll = —h() og(6%) +aams 37 37 ex(myma(m)
Galois Orbit AeLV/L m<0
Of’T‘A
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Computing |t5(7a)|

Z
3" tog lts(r)ll = —h() og(6%) +aams 37 37 ex(myma(m)
Galois Orbit AeLV/L m<0
Of’T‘A

@ Use this to compute |t5(7a)| for any CM point.
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Computing |t5(7a)|

Z
3" tog lts(r)ll = —h() og(6%) +aams 37 37 ex(myma(m)
Galois Orbit AeLV/L m<0
Of’T‘A

@ Use this to compute |t5(7a)| for any CM point.
e Calculation of the k)(m) is intensive:
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Computing |t5(7a)|

Z
3" tog lts(r)ll = —h() og(6%) +aams 37 37 ex(myma(m)
Galois Orbit AeLV/L m<0
Of’T‘A

@ Use this to compute |t5(7a)| for any CM point.
e Calculation of the k)(m) is intensive:

o Needs to be done p-adically.

o Explicit formulas exist (if you know where to find them).

o Ultimately programmed in Mathematica due to the sheer
number of calculations required.
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Computing |t5(7a)|

Z
3" tog lts(r)ll = —h() og(6%) +aams 37 37 ex(myma(m)
Galois Orbit AeLV/L m<0
Of’T‘A

@ Use this to compute |t5(7a)| for any CM point.

e Calculation of the k)(m) is intensive:
o Needs to be done p-adically.
o Explicit formulas exist (if you know where to find them).
o Ultimately programmed in Mathematica due to the sheer

number of calculations required.
@ No general Gross-Zagier type theorem, but at least
calculations can be done.
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Results

@ The maps tg and t1p are Borcherds Forms.
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Summary
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Results

@ The maps tg and t1p are Borcherds Forms.

@ Proved all the conjectural values in Elkies's table of rational
CM points of &g
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Summary
.

Results

@ The maps tg and t1p are Borcherds Forms.

@ Proved all the conjectural values in Elkies's table of rational
CM points of &g

@ Also proved all the conjectural values in Elkies's table of
rational CM points of A7j.
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Summary
.

Results
Coordinates of Rational CM Points on XG*
A Numerator Denominator

7 3
—40 g . 56 Coordinates of Rational CM Points on X{E
—52 2 ? 510 A Numerator Denominator
—19 3 2 w0 o 1
—84 —2272 33
—88 3774 59113 3 5
—100 2437745 110 :17220 _533 3 727
—120 74 3353
—132 2*112 56 e 63 52

_ 6
—168 —7211* 50 35 2 7
—43 3774 21056
4 1

—51 -7 20 —180 —2.113 132
—75 14 210335
—312 7423* 50116
—147 —11423* 21033567
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Summary
.

Results
Coordinates of Rational CM Points on X"
A Numerator Denominator
—40 37 52 Coordinates of Rational CM Points on X7
—ig 2237 25160 A Numerator Denominator
—84 —2272 33 —40 v 3 5
—88 3774 56113 —52 23 >,
~100 2437745 116 e % 3]
—120 7* 3353 —120 o5 [
—132 2%112 50 —88 ¥ 2]
—148 223774114 56176 —z e >
—168 —7%114 56 - 23 3 2 27 2
s 774 51056 —148 2 2 %1 527°13
-5l -7 210 711330 i 3113 51372
64192 66 - el
éig 3727“7111“9194 55235293 -2 3316133172 225272532
—67 3774114 21656 -5 —23% [
75 114 210335 —280 s 23
—312 74234 56116 —340 2P T
—372 —227%19*312 3350110 —us 233 3 3 123 > 2
—408 —7*114314 3050173 —520 3 %93 3 227 213 o
T T et 21050 —163 7233 s 131 7213%29%31
—147 —11423% 21033567 —T60 3 6173 473 S
—163 3117419%234 21056716776 —235 237 T
—708 | 287*11%47%592 56170290
—267 —7431%43% 21656116
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Summary
.

Results

@ The maps tg and t1p are Borcherds Forms.

@ Proved all the conjectural values in Elkies's table of rational
CM points of &g

@ Also proved all the conjectural values in Elkies's table of
rational CM points of A7j.

@ Can compute examples far beyond the scope of Elkies's work,
such as norms of irrational CM points of arbitrary discriminant
on A¢ and AT,
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Summary
.

Results

@ The maps tg and t1p are Borcherds Forms.

@ Proved all the conjectural values in Elkies's table of rational
CM points of &g

@ Also proved all the conjectural values in Elkies's table of
rational CM points of A7j.

@ Can compute examples far beyond the scope of Elkies's work,

such as norms of irrational CM points of arbitrary discriminant
on A¢ and AT,

216712714832
176206416

|t6(T—096)| =
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