Constructing Vector-Valued Modular Forms From Scalar Ones

Eric Errthum

Spotlight on Graduate Research Talk Nov 2006

Run-of-the-Mill Modular Forms with Type

Let:

- $\mathfrak{h} = \{z \in \mathbb{C} \mid \mathfrak{F}(z) > 0\}$ be the upper half plane.
- $SL_2(\mathbb{Z})$ act on \mathfrak{h} via linear fractional transformations, i.e. $\gamma z = \begin{pmatrix} a & b \\ c & d \end{pmatrix} z := \frac{az+b}{cz+d}$
- $\bullet \ j(\gamma,z)=cz+d$

and choose

- A character (1-dim. rep.), $\chi : SL_2(\mathbb{Z}) \to \mathbb{C}^{\times}$
- A subgroup, $\Gamma \subset SL_2(\mathbb{Z})$

Example:
$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ Nc & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \right\}$$

Definition: A function $f : \mathfrak{h} \to \mathbb{C}$ is a modular form on Γ of weight $k \in \mathbb{Z}$ and type χ if it satisfies for every $\gamma \in \Gamma$

$$f(\gamma z) = j(\gamma, z)^k \chi(\gamma) f(z).$$

Examples:

$$\Delta(z) = q \prod_{n=1}^{\infty} (1 - q^n)^{24} \quad \text{where } q = e^{2\pi i z}$$
$$E_2(z, \chi_3) = \sum_{n \ge 1} q^n \sum_{d|n} d^2 \chi_3(n/d) \quad \text{where } \chi_3(\cdot) = \left(\frac{\cdot}{3}\right)$$

Slash Operator

Define

$$(f|_{k,\chi}\gamma)(z) = j(\gamma, z)^{-k} f(\gamma z)$$

Then

$$\begin{array}{ccc} f \text{ Modular Form} \\ \text{type } \chi, \text{ weight } k & \Longleftrightarrow & f|_{k,\chi} \gamma = \chi(\gamma) f \\ & & \text{for all } \gamma \in \Gamma \end{array}$$

Double Cover of $\mathbf{SL}_2(\mathbb{Z})$

$$\widetilde{\mathrm{SL}}_{2}(\mathbb{Z}) = \left\{ \begin{pmatrix} \gamma, \pm \sqrt{c\tau + d} \end{pmatrix} \mid \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_{2}(\mathbb{Z}) \right\}$$

is a double cover of $\mathrm{SL}_{2}(\mathbb{Z})$.

 $\widetilde{\operatorname{SL}_2}(\mathbb{Z})$ still acts on \mathfrak{h} via linear fractional transformations.

Vector-Valued Modular Forms with Type

Choose

• A *n*-dim. rep.,
$$\rho : \widetilde{\mathrm{SL}}_2(\mathbb{Z}) \to \mathrm{GL}_n(\mathbb{C})$$

• A discrete subgroup, $\widetilde{\Gamma} \subset \widetilde{\operatorname{SL}}_2(\mathbb{Z})$

Definition: A function $F : \mathfrak{h} \to \mathbb{C}^n$ is a modular form on $\widetilde{\Gamma}$ of weight $k \in \frac{1}{2}\mathbb{Z}$ and type ρ if it satifies

$$F(\gamma z) = j(\gamma, z)^k \rho(\gamma) F(z)$$

for every $\gamma \in \widetilde{\Gamma}$.

OR

$$F|_{k,\rho}\gamma = \rho(\gamma)F \quad \text{for} \quad \gamma \in \widetilde{\Gamma}$$

Compare to scalar-valued criterion:

$$f|_{k,\chi}\gamma = \chi(\gamma)f$$
 for $\gamma \in \Gamma$

Examples:

For
$$n = 1$$
, $\widetilde{\Gamma} = \widetilde{\Gamma_0(4)}$, $k = \frac{1}{2}$, and $\chi_{\theta}(\gamma) = \mp i^{(d-1)/2} \left(\frac{c}{d}\right)$
 $\theta(z) = \sum_{n \in \mathbb{Z}} q^{n^2}$

The \mathbb{C} -Vector Space

Let Λ be a finite abelian (additive) group with a \mathbb{Q}/\mathbb{Z} -valued quadratic form Q_N such that $NQ_N(\lambda) = 0$ for all $\lambda \in \Lambda$.

Example: A lattice L with quadratic form, $\Lambda = L^{\vee}/L$.

Take $\mathbb{C}^{|\Lambda|}$ with basis $\{e_{\lambda}\}_{\lambda\in\Lambda}$.

The Character and Representation

We'll need a scalar-valued modular form of weight k and character

$$\chi_{\Lambda} = \chi_{\theta}^{2k + \left(\frac{-1}{|\Lambda|}\right) - 1} \cdot \left(\frac{d}{2^{2k}|\Lambda|}\right)$$

Example: A product of forms of the type $\Delta^{\frac{j}{24}}(iz)$ for $i, j \in \mathbb{Z}$.

Choose ρ_{Λ} such that it satisfies

$$\rho_{\Lambda}(\gamma)e_{\lambda} = \chi_{\Lambda}(\gamma)e_{a\lambda}$$

for all $\gamma \in \widetilde{\Gamma_0(N)}$ and all $\lambda \in \Lambda$ with $Q_N(\lambda) = 0$.

Example: Weil Representation

The Construction

For f a modular form on $\Gamma_0(N)$ of weight k and type χ_{Λ} , define

$$F_f = \sum_{\gamma \in \widetilde{\Gamma_0(N)} \setminus \widetilde{\operatorname{SL}_2}(\mathbb{Z})} (f|_{k,\chi_\Lambda} \gamma) \rho_\Lambda(\gamma^{-1}) e_0.$$

Then F_f is a $\mathbb{C}^{|\Lambda|}$ -valued modular form on $\widetilde{\Gamma_0(N)}$ of weight k and type ρ_{Λ} .

Example: $\Lambda = \frac{1}{2}\mathbb{Z}/\mathbb{Z} \oplus \frac{1}{2}\mathbb{Z}/\mathbb{Z}$ with the quadratic form

$$Q_4((a,b)) = a^2 + b^2.$$
$$f = \frac{\Delta^{\frac{10}{24}}(2z)}{\Delta^{\frac{4}{24}}(z)\Delta^{\frac{4}{24}}(4z)}$$

is weight 1 with the correct character.

Let $f_i = f|_{k,\chi_\Lambda} \gamma_i$. Then

$$F_{f} = \begin{pmatrix} f_{1} - \frac{i}{2}(f_{2} - f_{3} + f_{5} + f_{6}) \\ \frac{i}{2}(f_{6} - f_{2}) - \frac{1}{2}(f_{3} + f_{5}) \\ \frac{i}{2}(f_{6} - f_{2}) - \frac{1}{2}(f_{3} + f_{5}) \\ -f_{4} + \frac{i}{2}(f_{5} - f_{2} - f_{3} - f_{6}) \end{pmatrix}$$

is a \mathbb{C}^4 -valued modular form on $\widetilde{\Gamma_0(4)}$ of weight 1 and type ρ_{Λ} .

Extra Property: F_f is invariant under transformations T that satisfy

$$T(e_{\lambda}) = e_{\lambda'} \Rightarrow Q_N(\lambda) = Q_N(\lambda')$$