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I. Background and Motivation

A. Knots and Knot Invariants
We define a knot as a closed, non-intersecting curve in three-dimensional space. For purposes of the calculations we
will be doing later, we consider the special case of the polygonal knot, which is a knot composed of a finite number
of line segments. A pair of given knots is considered equivalent if and only if there exists a way to deform one into
the other without cutting or allowing intersections in the knot. Then standard method of deforming a knot are the
three ”Reidemeister Moves”, along with stretching/contracting the the knot itself. It’s important to note that ”knot
popping” by compacting parts of the knot down to a single point, is not a valid deformation. Also taken into consid-

Figure 1: Top to bottom: Reidemeister moves I, II, III

eration are knot invariants, quantitative properties of a knot that do not change when the knot is deformed without
cuts/intersections. If an invariant is different from one knot to the other, than those knots cannot be equivalent. It is
important to note, however, that equal values for an invariant between two knots does not imply equivalence. The two
invariants we will be considering here are the determinant and signature of a knot.

Often knots are pictured as projections onto a two dimensional plane, with ”gaps” in the knot indicating crossings.
Imagine it as laying a knot flat on a table and looking down it from above. For the purposes of our determinant and
signature calculations, the knot is considered in the xy-plane, and all crossings will be considered with the line segments
comprising then in general position. This consideration will not change the invariant, as to put a knot projection’s
crossing into general position it only requires a rotation of perspective about the knot as a whole with no deformations
(legal or otherwise).

Figure 2: Left: A knot diagram. Right: A polygonal knot diagram of the same knot, composed of a finite number of line
segments



Figure 3: We can freely ”move about” a knot without changing it, but it does change the 2-dimensional projection.

B. Goeritz Matrix and Determinant of a Knot
The determinant of a knot K is given by the determinant of its projection’s corresponding Goeritz matrix G. It is
important to note that although the specific Goeritz Matrix is dependent on the projection, the determinant of K is
invariant.
We begin by shading the projection of K in a ”checkerboard-fashion”, alternating coloring regions white/black such
that no two regions of the same color share an edge.

Figure 4: The ”figure eight” knot colored in a checkerboard fashion.



At each crossing, C, we assign a value of η (C) = ±1 according to the convention pictured below.

Figure 5: Left: Crossing with η = −1. Right: Crossing with η = 1.

It is from here that we can construct G′, a preliminary step towards the Goeritz matrix G. To begin we denote the
n+ 1 white regions of our shaded projection by R0, R1, . . . , Rn. For each entry gij in G′, we have

gij =


−Ση (C) , The sum of crossings C incident to Xi and Xj if i 6= j

−
∑

k=0,1,...,n

k 6=i

gik, if i = j.

The Goeritz matrix G is the n × n symmetric matrix given by deleting (without loss of generality) the 0th row and
column of G′. The determinant of our knot K is then given simply by

det (K) = |det (G)| .

C. Signature of a Knot
Recall that the signature of a matrix is the difference between the number of positive and negative eigenvalues. It is
tempting to think that since the determinant of K follows so easily from computing det (G), that the signature of K,
σ (K), is equivalent to the signature of G, σ (G). However σ (G) changes on a Reidemeister II move. We obtain σ (K)
then, by subtracting an adjustment factor µ from σ (G).
To obtain adjustment factor µ, we begin by putting an orientation on the projection of K. We label each crossing C as
either ”Type I” or ”Type II” according to the pictured convention.

Figure 6: Left: Crossing of type I. Right: Crossing of type II.

We then define µ as the sum of the η (C) values of Type II crossings C. The signature of K is then given by

σ (K) = σ (G)− µ, where µ =
∑

Type II C

η(C).

In regards to connected sums of knots, experimentations with small examples show that given two knots K and T we
have,

det(K#T )



and
σ(K#T ) = σ(K)− σ(T ).

II. Algorithmic Processes

A. Program Flow

Figure 7: Sketch of the flow of the program as data is generated and moved through different processes in separate source files



Input data is formatted as a number of ordered triples representing the coordinates in R3 of the vertices of the polygonal
knot. Coordinates are given to the program in the order they occur while travelling along the polygonal knot in the
direction of its orientation. The actual orientation itself is irrelevant, as long as the order of points is preserved for
the orientation used. Each coordinate is stored as a Vertex data structure with datamembers x, y, z, refrenced as
vertexname->x, vertexname->y, vertexname->z, respectively.

Figure 8: Mathematica plot of sample vertex data for a random walk.

The input data is generated as a random walk via a C++ program written by Dr. Nathan Moore, whose output is
stored in a file sent to my program as a command line argument. The second command line argument to the program
determines the output file, where the crossing type, η-value, and label of each crossing of the random walk will be
stored as plain text. This file is sent as an argument to a second program that analyzes for regions and shading of those
regions, before finally computing the determinant and signature of a Goeritz matrix.

B. Finding Crossings

The lines/edges of the polygonal knot are determined by parametric equations for x, y, and z coordinates of straight
lines between vertices in sequence. I.e. a parametric equation describes the line/edge connecting vertex 1 to vertex 2,
vertex 2 to vertex 3, and so forth. The final vertex in the sequence connects to the first in order to close the knot. The
parameter for each equation is considered only on the interval [0, 1],

(x(t), y(t), z(t)) = (x1, y1, z1) + t(x2 − x1, y2 − y1, z2 − z1).

To find crossings, we consider the parametric equations of the first line/edge, parameterized by t. The equations for each
line we compare it to will be parameterized by s. For purposes of finding where the lines cross each other, we flatten our
knot to the xy-coordinate plane by considering only the parametric equations for the x and y coordinates of each line.
To find where the lines parameterized by t and s cross, we must find where their parameterizations return equal x and
y values. Let (x1, y1), (x2, y2) be the xy-coordinates for the vertices defining the first line, and (x3, y3), (x4, y4) be the
xy-coordinates for the vertices defining the second line. Let ∆x1 and ∆y1 represent the change in x and the change in
y in line 1’s parametric equations for x and y, with ∆x2, ∆y2, defined similarly for the second line. The computations
to find s and t where x and y are equal for the parametric equations for each line are given by

s =
∆x1(y3 − y1) + ∆y1(x1 − x3)

(∆x2 ·∆y1)− (∆y2 ·∆x1)
,

t =
x3 + s∆x2 − x1

∆x1
.

For this to be a ”legitimate” crossing, both the s and t values must be within the interval (0, 1), as that is as far as we’ve
”drawn” each line. If a crossings is found, we put the values of s and t where the crossing occurs into the equations for
the z-values of each line to determine which line (named by which vertices serve as its endpoints) crosses over the other.

To ensure that each line is checked for crossings and that each crossing is only recorded once, we perform the crossing
computation on the first line compared with the third line, fourth line, etc. We then do the same for the second line
compared to the fourth, fifth, etc. as we note that lines cannot possibly cross the next line in sequence in a polygonal
knot. It is important to remember a definition of a line from the last vertex to the first in order to ”close” the knot.

Psuedocode:

// Finding c r o s s i n g s
f o r ( a = 1 ; a < (# o f l i n e s ) ; a++){

f o r (b = a + 2 ; b < (# o f l i n e s ) ; b++){
f i r s t l i n e x = vertex a−>x + t *( ve r t ex b −>x − vertex a−>x ) ;
s e c o n d l i n e x = ver tex c−>x + s *( vertex d−>x − ver tex c−>x ) ;



f i r s t l i n e y = vertex a−>y + t *( ve r t ex b −>y − vertex a−>y ) ;
s e c o n d l i n e y = ver tex c−>y + s *( vertex d−>y − ver tex c−>y ) ;

s o l v e ( f i r s t l i n e x = s e c o n d l i n e x , f i r s t l i n e y = s e c o n d l i n e y , computed s ,
computed t ) ;

i f ( s > 0 && s < 1 && t > 0 && t < 1) then
f i r s t l i n e z = vertex a−>z + computed t *( ve r t ex b −>z −

vertex a−>z ) ;
s e c o n d l i n e z = ver tex c−>z + computed s *( vertex d−>z −

ver tex c−>z ) ;

i f ( f i r s t l i n e z > s e c o n d l i n e z ) then
f i r s t l i n e c r o s s e s over s e c o n d l i n e

e l s e
s e c o n d l i n e c r o s s e s over f i r s t l i n e

}
}

The lines on which the crossing occurs are stored as part of the Crossing data structure, and upon being found a
negative integer is assigned to the Crossing. Where the crossing occurs in R2, and the slopes of parametric equations
for x and y of each line are used in the computation of the crossing type, which immediately follows. The change in each
parametric equation’s respective variable - which is from here referred to as the ”slope” of the parametric equaition - will
also be used in the computation of η-values, which immediately follows type computations. Further more, we store in
the Crossing data structure’s1 linedata1 and linedata2 arrays the vertices of the lines the crossing occurs on, and the
t/s-values of each line in the crossing, for use in finding knot regions. We also record the lowest numbered vertices for
the over and undercrossings. As it requires at minimum four vertices to define a crossing (two crossing line segments),
we allocate enough array space for four times the number of crossings for the array of Crossing data structures.

C. Type Checking

We compute crossing type immediately upon finding a crossing. We begin by extending a line from the point where the
crossing was found on the xy-coordinate plane. As with lines representing our knot, this line is defined parametrically.
As with finding crossings, let ∆x1 be the change in x for the parametric equation for x of our first line, and ∆y1 be the
change in y for the parametric equation for y of the for the first line, with symbols representing the changes in x and
y of the second line’s equations defined similarly. The parametric equations for our line extending from the crossing
point, then, is given by

x(t) = crossingpoint->x + t(∆x1 + ∆x2),

y(t) = crossingpoint->y + t(∆y1 + ∆y2).

We omit a parametric equation for z of the line coming from the crossing, as it is irrelevant to the type computation.

We check this line against all other lines in the knot for crossings as in part B, with the exception that instead of
checking for which line is over/under the other, we merely count the total number of crossings. The number of crossings
is odd, then the crossing we are checking is a Type I crossing. If the number of crossings is even, then the crossing we
are checking is a Type II crossing.

Psuedocode:

//Check Type

c r o s s i n g l i n e x = cro s s i ngpo in t−>x + t *( l i n e 1 x s l o p e + l i n e 2 x s l o p e ) ;
c r o s s i n g l i n e y = cro s s i ngpo in t−>y + t *( l i n e 1 y s l o p e + l i n e 2 y s l o p e ) ;

f o r ( i = 1 ; i <= l i n e s i n k n o t ; i++){
checkCross ing ( c r o s s i n g l i n e , l i n e [ i ] ) ;
i f ( c r o s s i n g )

c r o s s i n g c o u n t e r +1;
}

i f ( c r o s s i n g c o u n t e r %2 ==0)



type = 2 ;

i f ( c r o s s i n g c o u n t e r %2 == 1)
type = 1 ;

The result of the computation is stored in each Crossing’s data member for type, which is used in the η-computation
immediately following typing.

D. η Values

Computing η values of a crossing is a matter of checking various values of each Crossing data structure and running
them through a series of conditional statements. We first check the type of crossing to find which set of conditional
statements to use. We then look at the slopes of the x and y parametric equations of the overcrossing line, then the
slopes of the x and y parametric equations of the undercrossing line. At the end this uniquely determines an η-value of
1 or −1 for the crossing being checked.

Pseudocode:

type 1 :
i f ( s l o p e x o v e r <= 0 && s l o p e y o v e r > 0) {

i f ( s l ope x unde r <= 0) {
eta = −1;

} e l s e {
eta = 1 ;

}
}
i f ( s l o p e x o v e r >= 0 && s l o p e y o v e r < 0) {

i f ( s l ope x unde r >= 0) {
eta = −1;

} e l s e {
eta = 1 ;

}
}
i f ( s l o p e x o v e r < 0 && s l o p e y o v e r <= 0) {

i f ( s l ope y unde r <= 0) {
eta = −1;

} e l s e {
eta = 1 ;

}
}
i f ( s l o p e x o v e r > 0 && s l o p e y o v e r >= 0) {

i f ( s l ope y unde r >= 0) {
eta = −1;

} e l s e {
eta = 1 ;

}
}
break ;

type 2 :
i f ( s l o p e x o v e r <= 0 && s l o p e y o v e r > 0) {

i f ( s l ope x unde r >= 0) {
eta = −1;

} e l s e {
eta = 1 ;

}
}
i f ( s l o p e x o v e r >= 0 && s l o p e y o v e r < 0) {

i f ( s l ope x unde r <= 0) {
eta = −1;

} e l s e {
eta = 1 ;



}
}
i f ( s l o p e x o v e r < 0 && s l o p e y o v e r <= 0) {

i f ( s l ope y unde r >= 0) {
eta = −1;

} e l s e {
eta = 1 ;

}
}
i f ( s l o p e x o v e r > 0 && s l o p e y o v e r >= 0) {

i f ( s l ope y unde r <= 0) {
eta = −1;

} e l s e {
eta = 1 ;

}
}
break ;

The η-values are stored in each Crossing data structure as the integer member eta. These values will be used later in
computing the values of entries in the Goeritz matrix for the knot, as well as the ”correction factor” for the signature
of the knot.

E. Labelling Crossings

Crossing labelling is the preliminary step in defining the white regions of our knot projection necessary for constructing
the Goeritz matrix. It begins by redefining the knot in terms of line segments between crossings, hereon referred to as
”arcs”. Each arc is numbered as they are encountered going around the knot according to its orientation. Crossings
are then labeled as strings of 4 numbers, the order determined by the incoming arc going under, and then continuing
counter-clockwise around the crossing.

We begin by creating the line crossing array. This array consists of positive integers representing the vertices of the
polygonal knot (as we travel along it according to its orientation), and negative numbers representing the crossings, just
the opposites of their crossing numbers. When constructing, if we are at some crossing n, we record - in the order they
occur - each crossing on the line n to n+1, then adding n+1 to the array and continuing on. The line crossing array
looks something like

[..., vertex , first crossing on line, second crossing line,..., next vertex].

Another function (known as FixOrder) fixes the order of the crossings in the line crossing array to ensure that the
crossings are listed in the order they’re found travelling with respect to the knot’s orientation by checking the t-values
of each pair of crossings against each other, and swapping them if need be. Since a crossing splits two lines into four
arcs, we define the arc array to be four times the number of crossings.

Psuedocode:

// Creat ing l i n e c r o s s i n g a r r a y

l i n e c r o s s i n g a r r a y i n d e x = 0 ;
f o r ( c u r r e n t v e r t =0; cu r r en t ve r t<=num of vert s ; c u r r e n t v e r t++){

l i n e c r o s s i n g a r r a y [ l i n e c r o s s i n g a r r a y i n d e x ] = c u r r e n t v e r t % num of vert s ;
l i n e c r o s s i n g a r r a y i n d e x +1;
f o r ( c u r r e n t c r o s s =0; c u r r e n t c r o s s < num of c ro s s ing s ; c u r r e n t c r o s s++)) {

i f ( c r o s s i n g a r r a y [ c u r r e n t c r o s s ]−> l i n e 1 d a t a [0]== c u r r e n t v e r t and
c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−> l i n e 1 d a t a [ 1 ] == c u r r e n t v e r t +1)
{

l i n e c r o s s i n g a r r a y [ l i n e c r o s s i n g a r r a y i n d e x ] =
c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−>num;

l i n e c r o s s i n g a r r a y i n d e x +1;
FixOrder ( ) ;

} e l s e i f ( c r o s s i n g a r r a y [ c u r r e n t c r o s s ]−> l i n e 2 d a t a [0]== c u r r e n t v e r t
and c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−> l i n e 2 d a t a [ 1 ] ==

c u r r e n t v e r t +1){



l i n e c r o s s i n g a r r a y [ l i n e c r o s s i n g a r r a y i n d e x ] =
c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−>num;

l i n e c r o s s i n g a r r a y i n d e x +1;
FixOrder ( ) ;

}
}

}

After creating the line crossing array, we make an array to record what arcs a crossing occurs on, known as the
arc crossing array. The arc crossing array is created by analyzing the line crossing array pairwise, then noting
wheter the pair was both positive, both negative, or one of each. Beginning from arcnumber = 1, if the first pair we
look at is both negative (that is, both crossings), we increment arcnumber and place it in between the two (seperating
the crossings by the arc). If the pair we’re looking at is both positive, we just increment arcnumber and add it to the
array, treating multiple connected line segments with no crossings as a single arc. Should the pair be one positive,
one negative, we must consider the order in which they occur. If the first in the pair is negative (a crossing), we add
the crossing to arc crossing array, then increment the arc counter and append that to the array as well. If the first
number is positive (a vertex), we merely add the negative (crossing) number from the pair to the arc crossing array.
The final array looks like

[..., arc, crossing, next arc, crossing, next arc,...]

Should the arc crossing array begin on a positive (arc) number, the last postive(arc) number is changed to match, to
account for the cyclical nature of the knot.
Psuedocode:

// Creat ing a r c c r o s s i n g a r r a y
//we want to s t a r t as c l o s e to the f i r s t c r o s s i n g as p o s s i b l e , e i t h e r d i r e c t l y on i t

or r i g h t next to i t , so we s t a r t AFTER vertex 0
f o r ( i =0; i < n u m l i n e c r o s s i n g a r r a y e l e m e n t s ; i++){

i f ( l i n e c r o s s i n g a r r a [ i ] !=0){
s t a r t i n d e x =i ;
break ;

}
}

a r c c r o s s i n g a r r a y [ 0 ] = l i n e c r o s s i n g a r r a y [ s t a r t i n d e x ] ;
// i f f i r s t entry in a r c c r o s s i n g a r r a y i s a c r o s s i n g
i f ( a r c a r r a y [ 0 ] < 0) {

a r c counte r =0;
} e l s e {

a r c counte r =1;
}

f o r ( i n t i = s t a r t i n d e x ; i < ( n u m l i n e c r o s s i n g e l e m e n t s − 1) ; i++){
i f ( l i n e c r o s s i n g a r r a y [ i ] < 0) {

i f ( l i n e c r o s s i n g a r r a y [ i +1] < 0) {
a r c counte r++;
a r c a r r a y [ a r c a r r a y i n d e x ] = arc counte r ;
a r c a r r a y [ a r c a r r a y i n d e x +1] = l i n e c r o s s i n g a r r a y [ i +1] ;
a r c a r r a y i n d e x +=2;

} e l s e {
a r c counte r++;
a r c a r r a y [ a r c a r r a y i n d e x ] = arc counte r ;
a r c a r r a y i n d e x +=1;

}
}
i f ( l i n e c r o s s i n g a r r a y [ i ] >= 0) {

i f ( l i n e c r o s s i n g a r r a y [ i +1] < 0) {
a r c a r r a y [ a r c a r r a y i n d e x ] = l i n e c r o s s i n g a r r a y [ i +1] ;
a r c a r r a y i n d e x +=1;

}
}



} //end o f a lgor i thm loop
l a s t o u t p u t i n d e x = a r c a r r a y i n d e x − 1 ;
// Correc t ion fa c to r , f o r when we need f i r s t / l a s t arc to be the same
i f ( l i n e c r o s s i n g a r r a y [ 0 ] >= 0 && l i n e c r o s s i n g a r r a y [ 1 ] >= 0 && l i n e c r o s s i n g a r r a y [

n u m l i n e c r o s s i n g e l e m e n t s − 2 ] >= 0 && l i n e c r o s s i n g a r r a y [
n u m l i n e c r o s s i n g e l e m e n t s − 2 ] >= 0) {

a r c a r r a y [ l a s t o u t p u t i n d e x ] = a r c a r r a y [ 0 ] ;
}

Finally comes reading the arc crossing array to determine the label for each crossing. Since each crossing is touching
4 arcs, it follows that each crossing number must appear exactly twice (being surrounded by two distinct arcs each
time). To begin labelling we read into each Crossing’s label array the numbers that occur on either side of its crossing
number in the arc crossing array in sequential order. So, for example, for the crossing corresponding to −1, if the
arc crossing array contains

[...,1,-1,2,.....,7,-1,8,...].

Then that crossing’s label is (for the moment) [1278].
We now need to determine the incoming undercrossing arc. Consider a crossing with label abcd. Back when we found
this crossing, we recorded the first number of the vertex of the undercrossing line, and the first number of the vertex of
the overcrossing line as lowvertex and highvertex, respectively. If lowvertext <highvertex, then a is the incoming
undercrossing arc. Otherwise, c is the incoming undercrossing. We take into consideration the crossing’s type and
eta value, and shuffle the label we found earlier according to the following graphics to determine the actual label.

Figure 9: Crossings with a as the incoming undercrossing arc. Top Left: Type I, η = −1, Label adbc. Top Right: Type I, η = 1,
Label acbd. Bottom Left: Type II, η = −1, Label acbd. Bottom Right: Type II, η = 1, Label adbc.



Figure 10: Crossings with c as the incoming undercrossing arc. Top Left: Type I, η = −1, Label cbda. Top Right: Type I, η = 1,
Label cabd. Bottom Left: Type II, η = −1, Label cabd. Bottom Right: Type II, η = 1, Label cdba.

It is important to note that the 4 integers comprising a crossing’s label are not necessarily unique. In the case of loops
which can (ordinarily) be removed via a Reidemeister I move, we have crossings with repeated integers in their labels,
the possible cases being pictured below.

Figure 11: Top Left: Label abcc. Top Right: Label abbc. Bottom Left: Label aabc. Bottom Right: Label abca.

Psuedocode:

// Create Labels
// c r e a t e ” pre l im inary ” l a b e l o f s t r a i g h t arc numbers , without regard to order
f o r ( c u r r e n t c r o s s i n g = 0 ; c u r r e n t c r o s s i n g < num of c ro s s ing s ; c u r r e n t c r o s s i n g++){

cross ing encounter num =0;
f i r s t t o u c h i n g a r c i n d e x =0;
s e cond touch ing a r c index =0;
whi l e ( cross ing encounter num < 2) {

f o r ( a r c a r r a y i n d e x = 0 ; a r c a r r a y i n d e x < l a s t a r c i n d e x ;
a r c a r r a y i n d e x++){

i f ( a r c a r r a y [ a r c a r r a y i n d e x ] == c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ] ) {
cross ing encounter num++;

//make sure we don ’ t ” f a l l o f f ” the a r c a r r a y
i f ( a r c a r r a y i n d e x −1 >= 0 && a r c a r r a y i n d e x + 1 <=

l a s t a r c i n d e x ) {
// s e t in l a b e l array the a r c s on e i t h e r s i d e o f the

c r o s s i n g
c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−> l a b e l [

f i r s t t o u c h i n g a r c i n d e x ] = a r c a r r a y [



a r c a r r a y i n d e x − 1 ] ;
c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−> l a b e l [

s e cond touch ing a rc ] = a r c a r r a y [ a r c a r r a y i n d e x +
1 ] ;

f i r s t t o u c h i n g a r c i n d e x +=2;
s e cond touch ing a r c index +=2;

} e l s e i f ( a r c a r r a y i n d e x − 1 < 0) {
// case o f c r o s s i n g as f i r s t entry
c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−> l a b e l [

f i r s t t o u c h i n g a r c i n d e x ] = a r c a r r a y [
l a s t a r c i n d e x ] ;

c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−> l a b e l [
s e cond touch ing a r c index ] = a r c a r r a y [
a r c a r r a y i n d e x +1] ;

f i r s t t o u c h i n g a r c i n d e x +=2;
s e cond toucn ing a r c index +=2;

} e l s e i f ( a r c a r r a y i n d e x + 1 > l a s t a r c i n d e x ) {
// c r o s s i n g i s l a s t in array , need to loop back to

f i r s t arc
c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−> l a b e l [

f i r s t t o u c h i n g a r c i n d e x = a r c a r r a y [
a r c a r r a y i n d e x −1];

c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−> l a b e l [
s e cond touch ing a r c index ] = 1 ;

} //end o f i f−e l s e b lock
} //end o f f o r loop in whi l e loop

} //end o f whi l e loop
}//end o f f o r loop conta in ing whi l e loop

//” S h u f f l e ” pre l im inary l a b e l s i n to proper c r o s s i n g l a b e l s
f o r ( c u r r e n t c r o s s i n g =0; c u r r e n t c r o s s i n g < num of c ro s s ing s ; c u r r e n t c r o s s i n g++){

// put ” pre l im inary ” l a b e l i n to temp labe l array f o r s h u f f l i n g
f o r ( j = 0 ; j < 4 ; j++){

temp labe l [ j ] = c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−> l a b e l [ j ] ;
}
//” i f a incoming under”
i f ( c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−> l o w e s t v e r t e x < c r o s s i n g a r r a y [

c u r r e n t c r o s s i n g ]−>h i g h e s t v e r t e s x ) {
c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−> l a b e l [ 0 ] = temp labe l [ 0 ] ;
i f ( ( c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−>type == 1 &&
c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−>eta == −1) | |
( c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−>type == 2 &&
c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−>eta==1)) {

c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−> l a b e l [ 1 ] = temp labe l [ 3 ] ;
c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−> l a b e l [ 2 ] = temp labe l [ 1 ] ;
c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−> l a b e l [ 3 ] = temp labe l [ 2 ] ;

} e l s e {
c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−> l a b e l [ 1 ] = temp labe l [ 2 ] ;
c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−> l a b e l [ 2 ] = temp labe l [ 1 ] ;
c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−> l a b e l [ 3 ] = temp labe l [ 3 ] ;

}
} e l s e {//” c incoming under”

c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−> l a b e l [ 0 ] = temp labe l [ 2 ] ;
i f ( ( c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−>type == 1 && c r o s s i n g a r r a y [

c u r r e n t c r o s s i n g ]−>eta==−1)
| | ( c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−>type == 2 && c r o s s i n g a r r a y [

c u r r e n t c r o s s i n g ]−>eta==1)) {
c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−> l a b e l [ 1 ] = temp labe l [ 1 ] ;
c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−> l a b e l [ 2 ] = temp labe l [ 3 ] ;
c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−> l a b e l [ 3 ] = temp labe l [ 0 ] ;

} e l s e {
c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−> l a b e l [ 1 ] = temp labe l [ 0 ] ;



c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−> l a b e l [ 2 ] = temp labe l [ 3 ] ;
c r o s s i n g a r r a y [ c u r r e n t c r o s s i n g ]−> l a b e l [ 3 ] = temp labe l [ 1 ] ;

}
}

}

F. Finding Regions
A region is defined as the set of arcs surrounding a shaded or unshaded part of the colored knot diagram. We find
the regions of our knot by treating labels similar (though not entirely analogous) to permutations in cycle notations.
Beginning with C−1, we take the first two arcs of its label as the first two arcss in the label of the first region R0.
We’ll call these a and b. We search the remaining crossing labels for another occurrence of b. When we find it in some
crossing Ck we look at the next arc in that label following b (if b is the fourth arc in the label then we look at the first),
we’ll call this c. We record this as the third arc in R0’s label. We then repeat the process looking for c in all other
crossings besides Ck. Should this action ever return the first arc in the region’s label, we do not record it and terminate
the searching loop, completing the region’s label. To start the label for the next region R1, we use the third and fourth
arc’s of C−1’s label, under one condition. Since regions can only exist to the ”left” or ”right” of an arc, it follows that
any given arc number can occur only twice over the set of all region labels. Thus when beginning the search for the next
region R1, we must make sure that the arc we’re starting on hasn’t already occured twice among all our other region
labels. Concluding finding R1, we start the next region with the first two arcs from C−2’s label (again, provided they
haven’t already occurred twice), and so forth.

Example 1. If we have crossings with labels

1726, 5362, 3841, 7485,

Then our resulting regions have labels
174, 725, 26, 613, 538, 84.

Psuedocode:

// Finding Regions
i n t c u r r e n t r e g i o n =0;
f o r ( i n t c u r r e n t c r o s s i n g =0; c u r r e n t c r o s s i n g < t o t a l c r o s s i n g s ; c u r r e n t c r o s s i n g++){

f o r ( i n t i ; i < l a b e l s i z e ; i++){
i n t r e g i o n i n d e x =0;

i f ( o ccur r ence s ( c r o s s a r r a y [ c u r r e n t c r o s s i n g ]−> l a b e l [ i ] ) < 2) {
r e g i o n a r r a y [ c u r r e n t r e g i o n ]−> l a b e l [ r e g i o n i n d e x ] =

c r o s s a r r a y [ c u r r e n t c r o s s i n g ]−> l a b e l [ i ] ;
r e g i o n i n d e x++;
r e g i o n a r r a y [ c u r r e n t r e g i o n ]−> l a b e l [ r e g i o n i n d e x ] =

c r o s s a r r a y [ c u r r e n t c r o s s i n g ]−> l a b e l [ ( i +1)%l a b e l s i z e ] ;

f o r ( i n t k = 1 ; k <= 3 ; k++){
f o r ( i n t j =0; j < l a b e l s i z e ; j++){

i f ( c r o s s a r r a y [ ( c u r r e n t c r o s s i n g + k )%CROSSNUM
]−> l a b e l [ j ] == r e g i o n a r r a y [ c u r r e n t r e g i o n
]−> l a b e l [ r e g i o n i n d e x ] ) {

i f ( c r o s s a r r a y [ ( c u r r e n t c r o s s i n g+k )%
CROSSNUM]−> l a b e l [ ( j +1)%l a b e l s i z e ]
!= r e g i o n a r r a y [ c u r r e n t r e g i o n ]−>
l a b e l [ 0 ] ) {

r e g i o n i n d e x++;
r e g i o n a r r a y [ c u r r e n t r e g i o n ]−> l a b e l [

r e g i o n i n d e x ] = c r o s s a r r a y [ (
c u r r e n t c r o s s i n g+k )%CROSSNUM]−>
l a b e l [ ( j +1)%l a b e l s i z e ] ;

break ;
} e l s e {
break ;
}

}
}

}



c u r r e n t r e g i o n++;
}

}
}

Regions are stored in an array of structures Region Struct, containing data for both their label and an integer indicating
whether or not the region is shaded (1 for shaded, 0 for unshaded). We must allocate space for the label integer arrays
in the Region Struct structures at runtime, based on the number of crossings we have. Region memory is allocated at
4 regions to each crossing, as that is the maximum number of regions a given crossing can be incident to. Memory is
allocated using the ”struct hack” trick, now known formally as ”flexible array member allocation”. The code for which
follows.

//dynamic a l l o c a t i o n o f array data members
typede f s t r u c t Reg ion Struct {

i n t shade ;
i n t l a b e l [ ] ;
// f l e x i b l e array members must not be the only data members
// a l s o must be dec l a r ed l a s

} *Region ;

// a l l o c a t i n g memory f o r r eg i on s t r u c t s
f o r ( i n t i =0; i<NUM OF REGIONS; i++){

r e g i o n a r r a y [ i ] = ( s t r u c t Reg ion Struct *) mal loc ( s i z e o f ( s t r u c t Reg ion Struct ) +
LABEL SIZE* s i z e o f ( i n t ) ) ;

// where LABEL SIZE = number o f c r o s s i n g s
//Adding LABEL SIZE* s i z e o f ( i n t ) s e t s s i z e o f l a b e l [ ] array

}

G. Region Shading
Region shading is again determined from crossing data, primarily by the η-values and the label. Each crossing is ana-
lyzed in turn, and we find pairs of integers in it’s label that correspond to shaded areas of the knot diagram as in the
graphic below.

Figure 12: Left: When η = −1, we have that label integer pairs cb and ad imply any region label containing those pairs is
shaded. Right: For η = 1, we have that label integer pairs ab and cd imply shading.

Having found a pair of integers that defines a shaded area, we examine the labels of each crossing for a matching pair
(mindful that the last element in a label is considered adjacent to the first). In the existence of a matching pair, we
set that Region’s shade value to 1, and it is considered shaded. A region that has no matching pairs with any of the
shaded pairs checked has its shading value left at zero.
Following checking region shading, a function searches through the region array and notes the positions of all unshaded
regions, which are then stored to a seperate array, to be used in constructing the Goeritz matrix.

Psuedocode:

// Region Shading
f o r ( i n t i =0; i<NUM OF CROSSINGS; i++){

i f ( c r o s s i n g a r r a y [ i ]−>eta == 1) {
shade pa i r1 [2 ]={ c r o s s i n g a r r a y [ i ]−> l a b e l [ 0 ] , c r o s s i n g a r r a y−>l a b e l

[ 3 ] } ;



shade pa i r2 [2 ]={ c r o s s i n g a r r a y [ i ]−> l a b e l [ 1 ] , c r o s s i n g a r r a y−>l a b e l
[ 2 ] } ;

} e l s e {
shade pa i r1 [2 ]={ c r o s s i n g a r r a y [ i ]−> l a b e l [ 0 ] , c r o s s i n g a r r a y−>l a b e l

[ 1 ] } ;
shade pa i r2 [2 ]={ c r o s s i n g a r r a y [ i ]−> l a b e l [ 2 ] , c r o s s i n g a r r a y−>l a b e l

[ 3 ] } ;
}
f o r ( i n t j =0; j<NUM OF REGIONS; j++){

// search pa i rw i s e
f o r ( i n t l a b e l i n d e x ; l a b e l i n d e x < 4 ; l a b e l i n d e x++){

i f ( r e g i o n a r r a y [ j ]−> l a b e l [ l a b e l i n d e x ]==shade pa i r1 [ 0 ] &&
r e g i o n a r r a y [ j ]−> l a b e l [ ( l a b e l i n d e x +1)%4]==shadepa i r1 [ 1 ] ) {

r e g i o n a r r a y [ j ]−>shade =1;
} e l s e i f ( r e g i o n a r r a y [ j ]−> l a b e l [ l a b e l i n d e x ]==shade pa i r1 [ 1 ]

&& r e g i o n a r r a y [ j ]−> l a b e l [ ( l a b e l i n d e x +1)%4]==shadepa i r1
[ 0 ] ) {

r e g i o n a r r a y [ j ]−>shade =1;
} e l s e i f ( r e g i o n a r r a y [ j ]−> l a b e l [ l a b e l i n d e x ]==shade pa i r2 [ 0 ]

&& r e g i o n a r r a y [ j ]−> l a b e l [ ( l a b e l i n d e x +1)%4]==shadepa i r2
[ 1 ] ) {

r e g i o n a r r a y [ j ]−>shade =1;
} e l s e i f ( r e g i o n a r r a y [ j ]−> l a b e l [ l a b e l i n d e x ]==shade pa i r2 [ 1 ]

&& r e g i o n a r r a y [ j ]−> l a b e l [ ( l a b e l i n d e x +1)%4]==shadepa i r2
[ 0 ] ) {

r e g i o n a r r a y [ j ]−>shade =1;
}

}
}

}

// a s s i g n unshaded r e g i o n s to unshaded array
Region* unshaded reg ions [NUM OF REGIONS ] ;
i n t unshade index =0;
f o r ( i n t i ; i<NUM OF REGIONS; i++){

i f ( r e g i o n a r r a y [ i ]−>shade==0){
// po int to unshaded reg i on
unshaded reg ions [ unshade index]=&r e g i o n a r r a y [ i ] ;
unshade index++;

}
}

H. Matrix Operations
The Goeritz matrix is stored in program memory as a 1 dimensional array with integral offset. Each ”row” of the matrix
- sequence of array positions corresponding to a row of the Goeritz matrix - is filled in according to the rule established
under ”Background and Motivation”. The matrix is then converted into column major order (in a fashion similar to
matrix transposition) for use with the LAPACK library of functions to determine the determinant and eigenvalues of
the matrix, using the zgetrf and zgeev functions, respectively.
The variable storing the determinant of the matrix has it’s absolute value taken to give the determinant of the knot.

Psuedocode:

// f i n d matrix dimensions
i n t dim count =0;
whi l e ( r e g i o n a r r a y [ dim count ] !=NULL) {

dim count++;
}

// Assign unshaded r e g i o n s eta va lue s to matrix
f o r ( i n t i =0; i<dim count ; i++){

f o r ( i n t j =0; j<NUM OF REGIONS; j++){
two d goe r i t z mat r i x [ i ] [ j ] = −( r e g i o n a r r a y [ i ]−> t o t a l e t a +



r e g i o n a r r a y [ j ]−> t o t a l e t a )
}

}
// s e t d iagona l e n t r i e s o f two d array to f i t formula
f o r ( i n t i ; i<dim count ; i++){

two d goe r i t z mat r i x [ i ] [ i ]=0; // r e i n i t i a l i z e
f o r ( i n t j =0; j<dim count ; j++){

i f ( j != i ) { // only use va lue s not on d iagona l
two d goe r i t z mat r i x += (− two d goe r i t z mat r i x [ i ] [ j ] ) ;

}
}

}

// use o f f s e t to convert 2−dimens iona l array to 1−dimens iona l array , d e l e t e 0 th row and
column in the proce s s

//we f l i p i , j , f o r ”column major” s to rage f o r LAPACK
f l o a t g o e r i t z [ dim count*dim count ] ;
i n t g o e r i t z i n d e x =0;
f o r ( i n t i =1; i < dim count ; i++){

f o r ( i n t j =1; j<dim count ; j++){
g o e r i t z [ g o e r i t z i n d e x ]= two d goe r i t z mat r i x [ j ] [ i ] ;

}
}

//LAPACK funct ions , s e e LAPACK documentation f o r d e t a i l s
f l o a t determinant = z g e t r f ( g o e r i t z m a t r i x ) ;
i f ( determinant < 0) {

determinant = −determinant ;
}

f l o a t e i g e n v a l u e s [ ] = zgeev ( g o e r i t z m a t r i x ) ;

i n t poscount , negcount ;
f o r ( i n t i =0; i<NUM EIGENVALUES; i++){

i f ( e i g e n v a l u e s [ i ] > 0) {
poscount++;

} e l s e i f ( e i g e n v a l u e s [ i ]<0){
negcount++;

}

i n t s i g = poscount − negcount ;

i n t mu;
f o r ( i n t i =0; i<NUM OF CROSSINGS; i++){

i f ( c r o s s i n g a r r a y [ i ]−>type == 2) {
mu += c r o s s i n g a r r a y [ i ]−>eta ;

}

s i g −= mu;



I. Performance
Testing shows that as the number of data points tested increases, the time (in seconds) to compute crossing data
increases exponentially according to the following fit line.

The increase in crossings (and thus computation time) is directly correlated with the number of vertices in the vertex
data input. The nature of the deeply nested for loops in finding crossings and evaluating their types, labels, and
η-values makes them difficult to parallelize, but there is afforded many opportunities for parallelization with the actual
matrix computations for determinant and signature. One option is to load the matrix off the CPU to the GPU via
CUDA. CUDA has a BLAS-based library (CUBLAS) for dealing with matrices and other linear algebra operations.

Possiblities for use of the program in the future involve studying mutations of the knots generated, by the random
walks, done via manipulation of the crossing data. Changing crossings from over to under, or removing them entirely
(in some cases) should create drastically new knot types from the original. Utilizing this knowledge, then, we can begin
analysis of physical systems such as the knotting/entangling of protein and polymer chains, or even decompose them
into simpler ”prime” knots by looking at connected sums.


