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DEMONSTRATIO MATHEMATICA
Yol X1 No 1 1978
ledicated to Professor

Stefan Straszewicz

Jerzy Browkin

Continued fractions in local fields, I

Dedicated to Professor Stefan Straszewicz

0. Introduction

In the present paper we define a continued fraction expan-
sion of an element of a field complete with respect to a dis~
trete valuation and we prove some basic properties of such
continued fractions. There is some analogy with the ordinary
continued fraction expansions of real numbers.

A.ARuban [3] considered analogous continued fraction
expansions of p;adic integers and stated the existence and
the uniqueness of such expansions. There are alsc considered
another continued fractions connected with p-adic numbers
(see e.g. [1] and [5]). It seems however that these continued
fractions have very few in common with our definition.

We shall use the standard notations of the book of Per-

ree (2]

1. The mapping s. Let X be a field complete with res~-
pect to a discrete valuation v satisfying v(K*) = 2. De-
note by ¥ the canonical homomorphism of additive groups
x~—x/mv, whers m, is the maximal ideal of the ring Ov
of integers of K.

We shall consider a mapping s: K—= K satisfying
8(0)) =0, v8 =V and s(a) = s(b) for a-be m,. It fol-

lows that s{(b) - b e m, for every b € K. Of course such

.

- 67 -




ﬁ

2 J.Browkin

a mapping s is not canonical. In some important particular
cases we fix the mapping s as follows,

(1) Every element a of the field K complete with res.
pect to a discrete valuation v can be uniguely written in
the form

(1.1) & =L anﬂn,
n=r
where v(T) =1, re 2 and coefficients a belong to a

n
fixed set R of representatives of the residue class field

K of K. We assume that 0 ¢ R and a, # 0. For such
an element a we define
0
n
(1.2) s(a) =Zan5r .

n=r

It is easy to verify that the mapping 8 defined by (1,
and (1.2) has the requirel properties,

In particular if K = k((x)) is the field of power se-
ries over a field k then we define the mapping s as fol-
lows

0

(1.3) s<}ijan xn) = 2::an %7,

. . n=r n=r
where a, e k and r e 2z, Prom this formula we observe thai
in the case K = k((x)) the set s(K) is a ring, namely the
ring of polynomials k[x—1j.

(2) Let K = Qp be the field of p-adic numbers and de-
note by v the p~adic valuation., Let us observe that every
coset of Q /mv has the unigue representative belonging to
Z{%} and to the interval (—ﬂg ,-g:>. Derote this represen-
tative of the coset a + m, by s(a). It is easy to verify
that the mapping s has the required properties,

If we represent a p-adic number a (where p is an odd
prime) as the series
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Continned fractions 3

LD

a = g an pn’

n=r

vhere r € Z and a € {O, + 1y & 25000y % (p-1)}, then

0 ¢]
1
2:: n 1 } : n 1 pr+ - 1
&n P < ) (p"1> P = 2 T < 8*
n=r n=r p

and evidently

0 0

n 1 n
E a, P € Z [5}. Therefore s(a) = g a p.
n=yr n=r

It follows that in the case K = Qp’ p odd and R =
= go, + 1y £ 25000y + %»(p-1)} mappings s given by (1) and
(¢) coincide. For p = 2 +these mappings are different.

In what follows we assume that the mapping s is fixed.

2. Continued fractiong. For any element { ¢ K we de-
fine sequences (£ ) and (b,) as follows

(2.1) 649 = 6y - B(”En))“1 i gy #8(6)), by = 8(fy).

If ¢, = s(sn) for some n then the element €n+1 is
not defined and the sequences (En) and (b,) are finite,
We have

i

Tt b".'bZ"' .'bn’én*1]'

Let us observe that £ - s(En} £omy, l.e. vxén-s(gn));> 0
Hence v(¢, ) = -v(§, -s()) <0 Yor n > 0. Consequent-
Iy vib,, 40 =vis(g,  4)) =v(f , + 8l8 0 -£ .)) =

=v(§n+1)~< 0 for n > 0. Moreovar
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4 JeBrowkin

vigy) if v(¢ ) <0

v(b,) = v(s(§,)) =
v(0) it v(¢)) >0

i.e. b, =0 or v(bo) = v(so):< o
For any elements bo, byy «es of K let. An =
= A (b, byyeeesb,) and B = B (b,, by eees b)) be defi.

ned as follows:

4, =D =Dbgby v 1, Aj o =bys Ay A,

By=1, By=b

-
[

(2.2)

B = b B +Bn-

1? n+2 n+2 “n+

Lemma 1, If elements bqs Dpecse € K satisfy
v(bn) <0 for n>1 and B, are defined by (2.2) then

v(Bn) = v(b1) + v(bz) + eee + v(bn) for n >0,

Proof. We have v(Bo) =v(1) = 0 and v(B1) =
= v(b1), i.e. the lemma holds for n =0 and n = 1., Let
us assume that v(Bn) = v(b1) + v(bz) + ees + v(bn) and
v(Bn+1) = v(b1) + v(b2) + ees + v(an + v(bn+1) for some
non negative integer n. Then

V(b o Byyq) = vibyo) + viby) + vib,y) + aeu vib, ) < vz
Therefore
v(Bn+2) = v(bn+2 Bhyr * Bn) = v(bn+2 n+1) = v(bn+2) * V(bﬂ

+ v(bz) + eee + v(bn) + v(bn+1)

and the lemma follows by indnction,
Corollary. Under the assumptions of the lemms
we have v(Bn) < 0 for n >1 and hence B, # 0 for mn>
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Continued fractions 5

Prom (2.2) it follows that A, and B are respectively
the numerator and the denominator of the continued fraction
!:bO; b1, b2, ey bn] i,e. [bO; b1, b2, seey bn] = Bn .

Theoren 1. If elements bo' b1, ees € K satisfy

v(bn) <0 for n>1 and A , B, are defined by (2.2) then

Ay

the sequence <B—> is convergent to an element g ¢ K and
n

v \g -éi>= v(Ban+1) for n >0,

In particular v{g - b ) > 0.
Proof. By the well known formulas we have

An41 __;Al _RnerBy - ApBiyy _ (=1)"
B Bn -

n+1 Ban+1 - Ban+1 )
Hence
An+‘l ‘%1
Vig-—— ==%—]==-v(BB .)>0 for =n >0,
Bn+1 Bn n n+1

Therefore (—g’l—> is a Cauchy sequence and it is convergent
n

in the complete field K.

8ince by Lemma 1 the sequence (-v(Ban+1)) is increasing
we have

A A
v _B.;l -Bg = "V(BanH) for every m > n,

If m-=~occ we obtain v < -gi>= -v(B_B )y as claimed.

n n-n+1
. o _ s . - -
Since Bo = bC we have in particular v{g bo) = v(BOB1)
= -v(bj) > 0.
A
sm 4 .
We denote nlffan by [bo, b1, b2, ...].
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6 J.Browkin

Aasume now that the sequences (bn), (bh) satisfy
by» b;'e 8(K) for n >0 and v(bn) < 0, v(ﬁn) <0 for
n > 1. By standard arguments it follows that if these sge-
qusnces are different then the sequences [bo,b1,b2,...,b ]
and [b 3bysbsyeea,by ] have different limits. v

Namely we can assume that b # b and then by Theoren‘
we have v(g-b ) >0 and v(g -b') > O, where g = ?
= lin {bo,b1,...,hn] g = lim [bo,b seses n]. The equality

I} oo

g = gf would imply that b, and Ho belong to the same
coset modulo m, and hence bo = HD. Contradiction.
Theorem 2, Assume that the sequences (£ ) an

(b,) defined for an element £, € K by (2.1) are lnfinite,

and define An and Bn by (2.2). Then the sequence ( ) is
converxgent to &o.
Proof. We have

An+1 0* Pqs eees Pp» $n+1) §n+1An An. 1

to n+1(b1’ b2’ ters bn’ €n+1) En+1 + B -1 )
Therefore

¢ _:ﬁ; Ane1Bn = AgBpny - (-

° (€n+1B + By 1)Bh (€n+1Bn + Bn-1y3ﬁ

We have v({ ) = v(b ) <0, Hence from Lemma 1 it

n+1

follows that v(en+1 n * Bpoq) = v(Bn+1) and consequently
lim ~3m) .o,
n—eoo o Bn>

From Theorem 2 it is easy to deduce that every element
Eo € X has the unique finite or infinite continued fraction
expansion £ = [bo; by, by, ...J » where b € s(K) for
nx» 0 and v(bn)<o for n» 1.

In the sequel we shall consider only the continuous frac
tion expansions of this form.

-T2 -



Continued fractions 1

3, Continued fractions of rational numbers, In the field
Q of p-adic numbers we consider the mapping s defined

by (2), i.e. s(a) e ZB}—}, -; < sla) < ‘g and v(a ~-s(a)) > 0

for any ,  a e K.
Theoren 3. Every rational number has a finite
continued fraction expansion in the field Qp for every D.
Proof. Let £, ¢ Q < Qp and define sequences ({»n)
and (b, ) by means of (2.1) using the p-adic valuation v.
We have for n > 1

- -1
(3.1) £, =Py +6n01
if ¢, ., 1is defined. Here b, = s(¢,) is a rational number
belonging to z[%] and to the interval (—g , 8>. There-
fore b, = c,*p~k, where je, | < -;- pk+1, ‘e, € 2 and

-k = v(b ) = v(§,) < 0. It follows that

%n
Tk,
o An
where o, B, € Z, (an, Byl =1 and pfa, B
Anslogously we prove that

(3.2) £n

ol "
(3-3) én-ﬂ =“""“'I'1—+"I“— ]

m
p /Bn+1

where m > 1, oprqs Bpyq € 2y (an_”, 'gn+1) = 1 and

p}otnﬂ fgn+1' -1
kFrom (3.1) and (2%2) it follows that bpeq = By - bp) =

=p B, @, = ¢, An) and hence by (3.3) we obtain

(3.4) oGy = oy fp) = pkH® B Bast

From (3.4) we observe that o, , =+ B, and [, 4

=% pkm . @, - ¢, fp). It follows that
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8 Je«Browkin

- .

|Basa] < 27 (o] + 3057 [Bu]) < $lay] + 214,

Therefore
lotyq] + 2 [ Brys ,<iﬂnl +(\/|°‘nf + !/“InD= ’dng + 2 | pyl

Since the sequence kln! + Zlﬁn}) consists of natural
numbers and decreases, 1'.an it is finite,

4., Periodic continued fractions. Let X be a field com-
plete with respect to a discrete valuation v and let S be
the field generated by the set s(X}), If for §, € K we
have a perindic continued fraction expansion

£, = [bo; Byy Boyeasyby, br+1,...jB;],

with the period (br+1,...,bt), where b, € s(K) for |
0<1ix<t, v(bj) <0 for § >» 1, ihen by the standard arguﬁ
ments it follows that t, belongs to a quadratic extension |
of the field 8. '

The converse is not true in general but in several parti—?
cular cases we can give some posmitive results. On the other
hand we are unable to decide if every so £ Qp such that
(Q(go) : Q) = 2 has a periodic continued fraction expansion
in Qp,

We begin with a description of the general procedure. ILet |
DeS, VDe K and (S(VD) : S) = 2. Moreover suppose that
v(2) = O, Consider sequences (Qn) and (b)) defined by
means of (2,1} for the element §p = VD. It follows that
b€ 8 and £ e S{(VD)., Therefore there exisi uniquely de-
termined elements Pn' Qn € S such that

£ = Y?wiwfg .
n Qn

The sequences (Pn) and (Qn) can be described as follows:
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Continued fractions 9

1 = o 7 Ppe Qg = bn(Pn = Ppp1) + Gy -1 for n>1.

It is easy to deduce that

2 _
{(4.2) D~ Pf 4 =QQ,q for n3>o0.
Let 6 e G(s(VD)/s) satisfy 6(VD) = -YD. We define
L = 6(,). It follows that
- VD + Pn
Mn = Qn ¢
Applying the automorphism 6 to the egquality $ﬁ+1 = (Sn-bn)'1

we obtain 0, . = (p, - bn)-1’ because b € S.
Lemma 2. vip . ) =-v(§¢ ) for n>0.
Proof . Suppose that v(VD) < O. We have

9 = (pg - bo)"1 !

-1y -1 -y -
Do = o + €10 =265+ 64707
§;1 and n = -VD = - £,. Since

#

because éo - bo

v(£;1) >0 and v({) = v(VD) < 0, we obtzin v(n,; =

~v(-2 £ + E;1) = -v(¢ ). sSimilarly g, = (p, - b1)~1 =
-1y=1

Py = £4 +£2)

~v(£,), because v(§'2'1) >0, vip) = =v(£) = (VD) > 0

end v(¢,) <O,
Now let v(VD) > 0. We have b, = g{VD) = 0 and it
follows that

and hence v(pz) = -v(r)1 - §1 + 551) =

]

M= (ng =1)7 =03l = (VD)™ = - g0,

>0

Hence v(n,) = -v({ ). Analogously we have ¢, = (¢ -~ bo)—1 =
= §;1 = (VD)~' and hence Ny = - vl = - ¢4+ Moreover

§1 - by = 651, where v(851).> C. Consequently
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10 J.Browkin

3

(py = &, + 6507 = (c2gy + 507N

-1
2 = (1 -y

-1
Hence v(n,) = -v(-2 + ¢57) = -v(§,).

So thie lemma holds for n 1 and n = 2, Now we proceed
by induction. For n > 2 we have 0, , = (Qn - bn)"1 and
v(p,) = ~v(¢,_4) >0 Dby the inductive assumption. Since
vib ) = v(§,) <0, it : vlows that vip, ) = -v(p, - b,) =
= —V(bn) = -V(én).

Lemnma 3. For n > 2 we have

#

(1) viP ) = v(Qyb, ) = v(VD),

(i1) v(p, - VD) = v(¥D) - v(b, b, ).

n+1

Proof . Wehave v(§) <0 and vi(p ) = -v(¢, _,)>
>0 for n>2. Hemce v(£ +n.) =vif), i.e

2P
v (-6§> = v(bn) and Vv <?£§§ = v(bn).

It proves the first part of the lemma. The second part can
be deduced from the defimition of 5 as follows

P, -VD
v <T>= '(On>- = “V(En_.]) = 'V(bn—‘l}'

Consequently

v(p, - VD) ) =

viQy) = vlb, o) = v(b,Q)) - v(byb

n-~1

il

viVD) - vibb, ).

Theorem 4., If K = k({x)) is the field of po-
wer series over a finite field k, . then every element
Vﬁ'e K\ S such that D ¢ s{K) has the periodic continued
fraction expension.
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Continued fractions 11

Proof . For the field K = k((x)) of power series
over any field k we have s(K) = k[x'?} aad € = k(x).
Define elements P, and Q, &ty means of (4.1), Since the
set s(K) is a ring and D ¢ s(K), then from the formulas
(4.1) i? follows E?at Par Qp € s(K), i.e. P and Q, are
polynomials in x™',

From Lemma 3 it follows that the polynomials Pn have
the same degree and degrees of the polynomials Qn are boun-
ded.Consequently if the field k is finite, then the sequen-
ce (Pn’ Q)sn=0,1, 2,i.., has only finite number of
distinct terms. Since this sequence is defined by recurrent
relations, it is.periodic. It follows that the sequence (bn)
is also periodic,

On the other hand if the field k 1is infinite, then
Theorem 4 does not hold in general (see the paper [2] of
Schinzel),

Let De S and VD ¢ K\ S. We shall consider the equa~
tion

(4.3) %2 - Dy2 = (-1)2,

A solution x =%, y = u £ 0 of the equation (4.3) is said
to be a standard solution, if

(i) The element 3- has a finite continued fraction
expansion in K, % = [bo; b, bg"'°'be'

(i1) t = 4. (v, Disesesby), u = B (b,, Boyeeesb),

(iii) r = n~1 (mod 2).

Let us remark that in the case K = Q we have 8 = @
and hence by Theorem 3 the condition (1) is always fulfilled,

The following theorem 1ives some connections between the
periodicity of the continued fraction expansion of the elew-
ment VD and the existence of & standard solution of the
equation (4,3).

Theorem 5. ILet De S and VD ¢ K. 8. Then

(4.4) VB‘=\[bo; b, b2,‘..,bq] in K
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12 J.Browkin

if and only if x = A__4(b_ 40 ye0e,d q1), y = By (b LIRS

q-
...,bq_1) is a standard solution of the equation (4. 3‘ and
A - B
(4-5) bQ = bO + —3%._,__&:2,
1 q-1

belongs to s(K).
Proof ., =3, GSuppose that {4.4) holds. Then

VD = l:bo; Dyseensd

4» by = b + VD

q- q o

It follows that

s _-q=1""q " "o '"’ T “"q-2
(4.6) VD = 5 v SEoVDT 7B
and henc

- . = VD - y
VD (By.q(bg = b,) + By o) + DB, 4 = VD Ay_q * Ay (b by A,

~

Prom the irrationality of VD over 3 we deduce that

(4.7) a=1"%3 7 o’ Ba-z = Hq-1e

q-1'"q 0’ g-2 © DBg.q»

Multiplying the first of the above equalities by Aq_1,
the second - by 'Bq—1 and adding the results we obtain

= A B B . o= (-1772 _ (.9,

A q-1Bgq-2 = 4q-2Bq-1

- D B~

- q\-‘i

L2 1)

Thersfore (AP 10 Bg 1) is a standard solution of the
4= -

2

equation t° - D u2 = (—1)q. Moreover from (4,7) it follows

that
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Continued fractions 13

A ., -B
2 -1

by + ”g:%'"”“g:— = Pq

=1

and hence this element belongs to s(K).
<. Let t, u be a standard solution of the equation
(4.3). It means that u # 0 and has a finite continued

fraction expansion t [po; by b2,...,bq_1] such that

S et

u=
and q-1= n (mod 2), Moreover let

t = Aq_1, u = Bq_1
A - B
(4.8) by = By + =l 472 ¢ g(x).
q-1
2 2 _ (.19 . _
-Since Ay 4 - DBy 4 = (=1) By_ohqoq = AqpBqoqs then

from (4.8) we deduce that

DB
_ _ Tq-1 q-2 _ q=1
(4.9) b b, = B

q-1 Rq-1

- Aq-2

»

We shall prove that (4.6) holds. In fact, from (4.9) it
follows that

Ay.q(bg - B, +VD) + A, Ag_1\ﬁ54-$D Boq = Agp) + A o _
Bq_1(Bq - b, + VD) + Bq_2 B§_1 VD + \Aq_1 - Bq_2) + Bgoo
. D Bq_1 +Vﬁ‘AqL1 - 5.
VOB 4 + Ay,
From (4.6) we deduce that
(4.10) = VD = [bo; Bys Dpyeesy Do gy By = By o+ VD]

and hence

(4.11) VD - b, = [o; Dys Bpsenns Do gy by + (VD - boﬂ.
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Therefore substituting (4.11) into (4.10) and applying
standard arguments we obtain that VD = [bo;b1,b2"..,bq_1,béL

2. Examples, We cannot decide if for every D ¢ Q such
that (Q(VD) : Q) = 2 and VD € Q_ the continued fraction
for VD in Q is periodic, We give below some numerical
examples in the case p In all these examples the con-
tinued fraction of VD is periodic with an even
period,

To find a period of the sequence

5.

in Q5

(b,) it is sufficient

to find k and m such that P = Pk+m and Q = Qk+m'
VD + Py

It follows then that ék = o = 4 @nd consequently

bk+t = bk+m+t for all t > 0., Of course D should satisfy

2|v(D), VD¢ Q and D.5-V(D)_ + 1 (mod 5),

D=6, V6 =125+ 1,52, ,,,
" nlo 1 2 3 4 5 6
by |1 -8/5 6/5 7/5 -16/25 7/5 6/5
P 0 1 -9 -9 16 16 -9
Q| 1 5 =15 -5 -50 5 =15
Ve - [15 -8/5, 6/5, 1/5, ~16/25, 7/5]
D=11_. v:‘_T= 1 +105+2052+Oo53+0054+00-
n o 1 2 3 4 5 6 7 8 9 10
bn| 1 -9/5 9/5 -8/5 9/5 6/S5 2/5 56/25 ~2/5 56/25 2/5
Fpi 00 1 =19 =44 ~44 =19 31 -63 181 181 -69
Q|1 10 =35 55 =35 10 -95 50 -655 50 .95
n [ 11 12
b, |6/5 9/5
P| 31 -19
Q,| 10 -35
Vit =[5 <9/5, 9/5, <875, 9/5, 6/5, 2/5, 56725, <275, S6/25. 275 6/5).
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15

D=14. V14 =2 - 2.5 + 2,52 ~ 1.5 & ... .
n 0 1 2 3 4 5 6 7 8
b | 2 -3/5 -9/5 -6/5 166/125 =-6/5 -9/5 -8/5 -9/5
PO 2 -8 17 -83 -83 17 -8 -8
Q | 1 10 -5 55 =125 55 -5 10 -5

Vg = [2; -3/5, -9/5, -6/5, 166/125, ~6/5, 975, ~8/5].

- 81 -

6 = _ 1 2 3
D = 2”5' . VD = 5 = 2 + 1.5 - 1,5 - 2.5 + e
n 0 1 2 3 4 5
b, -9/5% 6/5 7/5 ~16/25 7/5 6/5
P.| 0 -9/5 -9/5  16/5  16/5 -9/
Q, 1 -3 1. -0 1 -3
Yg = [-9/5; 6/5, 7/5, =-16/25, 7/5]-
D = ';-%‘ 3 Vﬁ‘z-' % + 1 + 2.5 + e
n 0 1 2 3
b, | 6/5 -12/5 12/5 -12/5
Pl O 65 65 65
Q, | 1 -1 1 -1
Yi; = les55 -12/5, 1275).
14 2 2
D = “Zg‘ . W= '5— - 2 + 2-5 i 105 + see
n 0 1 2 3 4 5 6 7
b, -8/5 8/5 9/5 6/5 =~166/125 6/5 9/5 8/5
P, 0 -8/5 -8/5 17/5 ~83/5 -83/5 17/5 =-8/5
Q 1 =2 1 -1 25 111 -2
%’ = [‘8/5; 8/5’ 9/5, 6/5) "166/125’ 6/5! 9/5]'



16 ‘ J.Browkin

Cn the other hand our attempts to prove that the conti-
nued fraction of V19 in Q5 is periodic were without suc-
cess and after determining 22 terms of the sequence (bn)
we did not obtain a period.
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