Simple Linear Regression and Multiple Regression
Regression is used to study relationships between variables.  Linear regression is used for a special class of relationships, namely, those that can be described by straight lines, or by generalizations of straight lines to many dimensions. 

In regression we seek to understand how the value of a response of variable (Y) is related to a set of explanatory variables or predictors (X’s).  This is done by specifying a model that relates the mean or average value of the response to the predictors in mathematical form.  In simple linear regression we have single predictor variable (X) and we use a line 

(of the form y = mx + b) to relate the response to the predictor.

Regression Model Notation:
E(Y|X) = 

In regression we first specify a functional form or model for E(Y|X).  We then fit that model with using available data and then assess the adequacy of the model.  We may then decide to remove some of the explanatory variables that do not appear important, add others to improve the model, change the function form of the model, etc.  Regression is an iterative process where we fit a preliminary model and then modify our model based on the results.  

Regression Examples:
E(Cholesterol Level |Weight, Height, Age, Daily Caloric Intake) = 
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E(Blood Pressure|                                                                                                             ) =

E(Survival Time of Cancer Patient |                                                                                 ) =

Example 1:  Diastolic and Systolic Blood Pressure in Hypertensive Patients
	 Data File:
	 Hypertension.JMP
 

	Background:  
	These data were collected as part of a large study looking at patients with hypertension. 

	Variables:  
	· Diastolic BP: diastolic blood pressure (mmHg)
· Systolic BP: systolic blood pressure (mmHg)  

	Goal:
	Investigate the relationship between diastolic blood pressure (X) and systolic blood pressure (Y).  
Note: the roles of X and Y could certainly be reversed for this study.  In others, there is usually a clear response of interest.


 

Assumptions for a Simple Linear Regression Model
1.  The mean of the response variable (Y) can be modeled using X in the following form: 
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Recall: E(Y|X) is the notation we use to denote the mean value of Y given X. Here we are using a line to summarize the mean value of Y as a function of X.
2.  The variability in the response variable (Y) must be the same for each X, i.e. 
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.  In other words, the variance of Y must be constant across the entire range of X.
3.  The response measurements (Y’s) should be independent of each other.  If a simple random sample is taken from the population this typically the case.  One situation where this assumption is violated is when data if collected over time.
4.  The response measurements (Y), for a given value of X, should follow a normal distribution.

You should also take the time to identify outliers and influential points. Outliers and influential points can be very problematic in a regression model.  We will discuss how to check the assumptions outlined above after fitting our initial model.

Outlier






Influential Point
Start with a Plot of your Data
Select Analyze > Fit Y by X and place Systolic BP (mmHg) in the Y box and Diastolic BP (mmHg) in the X box. 

[image: image4.emf]


The resulting plot is shown below.
[image: image5.emf]


Fitting the regression model relating Systolic BP (Y) to Diastolic BP (X)
What is the population model?  We want to model the mean value of Y using X, so the model is given by: 
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or being specific for this situation, we have
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Again: E(Y|X) is the notation we use to denote the mean value of Y given X.

Taking a closer look at its pieces:
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For this data set, Y = Systolic BP and X = Diastolic BP.
How is the line that best fits our data determined?  Answer:  Method of Least Squares
To fit the model 
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we first select Analyze > Fit Y by X and place Systolic BP in the Y box and Diastolic BP in the X box as shown below. This will give us scatter plot of Y vs. X, from which we can fit the simple linear regression model.
[image: image10.emf]


The resulting scatter plot is shown below.        With regression line added.
[image: image11.emf]

                 [image: image12.emf]


To perform the regression of Systolic BP on Diastolic BP in JMP, select Fit Line from the Bivariate Fit... pull-down menu. 
[image: image13.emf]


The resulting output is shown below.
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We begin by looking at whether or not this regression stuff is even helpful:

[image: image15.emf]


This says that Diastolic BP (X) explains a significant

amount of variation in the response Systolic BP (Y).

Next we can assess the importance of the X variable, Diastolic BP in this case:
[image: image16.emf]


Conclusions from both tests:
Determining how well the model is doing in terms of explaining the response is done using the R-Square and Root Mean Square Error:

[image: image17.emf]


Describing the Relationship:
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Interpret each of the parameter estimates:

 
CI’s for the Parameter Estimates
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What do we estimate for the mean systolic blood pressure of hypertension patients that have a diastolic blood pressure of 100 mmHg?
If picked a single hypertensive patient with a diastolic blood pressure of 100 mmHg at random, what do we predict their systolic blood pressure will be?
Checking the Assumptions:
To check the adequacy of the model in terms of the basic assumptions involves looking a plots of the residuals from the fit.  One plot that is particular helpful for checking a number of the model assumptions is a plot of the residuals vs. the fitted values.  When we are performing simple linear regression we can alternatively plot the residuals vs. X, which is what JMP gives by default.
	 
 Ideal Residual Plot: 

	[image: image22.jpg]


  

	 Violations to Assumption #1:


	The trend need not be linear (BAD)
	The trend need not be linear (BAD)

	
	


	Violations to Assumption #2:


	Megaphone opening to right (BAD)
	Megaphone opening to the left (BAD)

	
	

	Violations to Assumption #3:


	One point closely following another -- positive autocorrelation,  (BAD)
	Extreme bouncing back and forth -- negative autocorrelation (BAD)

	[image: image23.jpg]



	[image: image24.jpg]




	Violations to Assumption #4:


	To check this assumption, simple save the residuals out and make a histogram of the residuals and/or look at a normal quantile plot.  Recall, you can easily make a histogram of a variable under Analyze > Distribution.  We should generally assess normality using a normal quantile plot as well.
[image: image25.emf]



	Checking for outliers:


	Determine the value of 2*RMSE.  Any observations outside these bands are potential outliers and should be investigated further to determine whether or not they adversely affect the model.
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Checking for outliers in this example we find:
[image: image27.emf]


To obtain the residual plot in JMP select Linear Fit > Plot Residuals
[image: image28.emf]
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THE ASSUMPTION CHECKLIST:

Model Appropriate:

  

Constant Variance:

  

Independence:

  

Normality Assumption (see histogram above):

Identify Outliers:


  
Confidence Interval for the Average or Mean Systolic Blood Pressure:
(i.e. the average systolic blood pressure for the entire population of hypertension patients with a given diastolic blood pressure.)
Select Confid Curves Fit from the Linear Fit pull-down menu located below the scatter plot.  The narrow bands in plot below represent the CI for the Mean Systolic Blood Pressure.  For example, from the plot below we estimate that the mean systolic blood pressure for patients with a diastolic blood pressure of 80 mmHg is likely to be somewhere between 122 – 126 mmHg.  We will examine a more precise way for obtaining such intervals later in the tutorial.
[image: image30.emf]


 

Prediction Interval for the Systolic Blood Pressure of a Single Patient:
(i.e., for a single hypertension patient sampled from the population of all hypertension patients with a specified diastolic blood pressure.)

Select Confid Curves Indiv from the Linear Fit pull-down menu which is located directly beneath the scatter plot.  These are the wider bands in the plot above.   For example if we were to sampled a single individual with a diastolic blood pressure of 100 mmHg we estimate with 95% confidence that their systolic blood pressure will be somewhere between 125 – 170 mmHg. We will examine a more precise way for obtaining exact intervals of this form later in the tutorial.
 

Using the Analyze > Fit Model Option to Perform the Regression
An alternative to using Fit Y by X to perform simple linear regression, is to use the Fit Model option from the Analyze menu.  The advantages of this approach are two-fold:

1)  You have access to more detailed results from your regression and have 
                 enhanced features for estimation/prediction of Y.


2)  Allows for the addition of more predictors (X’s) to your model.  This is
                 called multiple regression and will be discussed later.
For the blood pressure example we fit the model as follows:

Select Analyze > Fit Model and place Systolic BP in the Y box and Diastolic BP in Model Effects box.
[image: image31.emf]


If we had more predictors (X’s) that we wanted to add to our model we would simply put them in the Model Effects box, e.g. we could add information about the age, gender, height, weight, etc. of the patient as predictors.  When we have more than one predictor in a linear regression we call it a multiple regression.

The output from the Analyze > Fit Model option is shown below:
[image: image32.emf]
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Residual Plot
[image: image34.emf]


The bulk of the output is same as that obtained using the Analyze > Fit Y by X approach.
Estimation of the E(Y|X), the Mean Value of Y for a given X  & Prediction of Y for an Individual with a given X

 [image: image35.emf]


Below is a portion data spread sheet showing both types of intervals.
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Interpretation of the 95% Confidence Interval for E(Systolic BP|Diastolic BP = 80)
Consider estimating the average/mean systolic blood pressure for all hypertension patients with a diastolic blood pressure of 80 mmHg.  A 95% confidence interval for this mean is given by the interval 124.32 mmHg to 127.42 mmHg.  There is a 95% chance this interval covers the true mean systolic blood pressure of hypertension patients with diastolic blood pressures of 100 mmHg in the population.
Interpretation of the 95% Prediction Interval for Systolic BP|Diastolic BP = 100
Suppose we picked one individual at random from the population of all hypertension patients with diastolic blood pressures of 100 mmHg.  What do estimate the systolic blood pressure for this individual will be?   We estimate, with 95% confidence, that the actual blood pressure for this particular individual will be somewhere between 129.0 mmHg and 172.4 mmHg.  This range of pressures has a 95% chance of covering the systolic blood pressure for this randomly selected individual with a diastolic blood pressure of 100 mmHg.  Notice how much wider this interval is when compared to interval for the mean systolic blood pressure above.  This should seem natural as it is much harder to predict the systolic blood pressure of a single randomly selected individual than the mean systolic blood pressure of all individuals with a specific diastolic blood pressure.
Example 2 – BP (Y) vs. Age (X)     Data File: Age-BP
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Conclusions from tests results highlighted above:

[image: image41.emf]


Discussion of Residual Plot:

Distribution of the Residuals

[image: image42.emf]


Multiple Regression 

Example: Berkley Guidance Study       Data File: BGSgirls.JMP
The data for this example are excerpted from the Berkeley Guidance Study, a longitudinal monitoring the growth of boys and girls in Berkelely, CA, born between January 1928 and June 1929.  

The variables in the data for girls are: 

· WT2 = weight at age 2 (kg)

· HT2 = height at age 2 (cm)

· WT9 = weight at age 9

· HT9 = height at age 9

· LEG9 = leg circumference at age 9 (cm)

· STR9 = a composite measure of strength at age 9 (high values = stronger)

· WT18 = weight at age 18

· HT18 = height at age 18

· LEG18 = leg circumference at age 18

· STR18 = strength at age 18

· SOMA = somatotype, a seven-point scale, as a measure of fatness (1 = slender, 7 = fat), determined using a photograph taken at age 18.

In this example we will develop a multiple regression model for SOMA at age 18 using as potential predictors the variables from ages 2 and 9 only.   We begin by examining a scatter plot matrix of the potential predictors and the response, somatotype. To do this in JMP select Multivariate from the Analyze menu and place the response (SOMA) and the predictors (WT2, HT2, WT9, HT9, LEG9, STR9) in the right-hand Y box and click OK.   To obtain pair-wise correlations and tests of their significance select the Pairwise Correlations options from the Multivariate pull-down menu.  The results are shown below:

[image: image43.emf]


Significance tests for the pair-wise correlations:

[image: image44.emf]


We can see that weight and leg circumference at age 9 exhibit the strongest linear relationship with the response while height at age 2 and strength at age 9 exhibit the weakest correlation with the somatotype.  

[image: image45.emf]


We now will fit a preliminary multiple regression model using all potential predictors.   

To fit this model in JMP select Fit Model from the Analyze menu and place SOMA in the Y box and all of the predictors in the Effects in Model as shown below.

[image: image46.emf]


To fit the model click Run Model.  The resulting model is shown on the next page.
[image: image47.emf]


Before beginning any model simplification we will examine residual plots to check basic model assumptions. This plot is given at the bottom of the column of output with the heading Response Soma.  

[image: image48.emf]


The plot suggests no obvious model violations.  There is a mild outlier in the lower right-hand corner of the plot.  The stripes in the plot are due to the ordinal/discrete nature of the response and are of little concern.  A normal quantile plot for the residuals is shown below.  This is obtained in the usual way but we need the residuals saved to the data spreadsheet first.  To do this select Response Soma > Save Columns > Stud. Residuals
[image: image49.emf]


Assessing the normality of the studentized residuals.
[image: image50.emf]


With the exception of the outlier evident in previous plot normality appears to be satisfied.  The effect tests for the individual predictors suggest that the model could be simplified by removing several terms.

[image: image51.emf]


The individual tests suggest that WT2, HT9, Leg9, & Str9 could potentially be removed from the model.  Backward Elimination is model development strategy where first fit a model that includes all potential predictors of interest and then we proceed to remove insignificant predictors/effects one at a time until no further terms can be removed.  We remove terms with the largest p-values first and then continue removing until are terms are significant at some specified level of significance.  Often times we use 
[image: image52.wmf]10

.

=

a

rather than the usual .05 level for determining significance of an individual predictor.  We begin by taking out the height at age 9 (HT9) term whose associated p-value = .9050.   The results for this simpler model are shown below.
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Leg circumference at age 9 (p = .6100) could be removed next resulting the following:

[image: image55.emf]
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Finally we will remove weight at age 2 (WT2, p = .5840).

[image: image57.emf]


Although the Str9 does not test as significant at the .05 level we will leave it in leaving us with the following model for the mean somatotype given HT2, WT9, and STR9.


E(SOMA|HT2,WT9,STR9)  = HT2WT9 STR9

The negative coefficients for HT2 and STR9 seem surprising considering the fact that both are positively correlated with somatotype.  To help understand how this can happen do the following:   Use Distribution to obtain a histogram for WT9.  Next use Fit Y by X to construct scatter plots of SOMA vs. HT2 and SOMA vs. Str9.  Finally click on bars in the histogram for WT9 and examine the relationship between SOMA & HT2 and SOMA & STR9 for the highlighted points in the scatter plots.   What do we see?
[image: image58.emf]


We see that the relationship between both SOMA & HT2 and SOMA & STR9 is negative when conditioning on WT9.  
In multiple regression the marginal relationships between the response (Y) and the individual predictors (X) convey little useful information about their role in a multiple regression model!  

Diagnostic plots (residuals vs. fitted and residual normal quantile) for the final three-predictor model are shown below.

[image: image59.emf]
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Again no major model violations are suggested, however there is a fairly extreme outlier.  The studentized residual value is -3.76 for this observation.  This could indicate a potential error in recording the data for this individual or it may simply be the case this particular girl is very atypical.  Her actual somatotype at age 18 is much smaller than is expected given her body measurements at ages 2 and 9.  Perhaps she was very chubby as a younger child and grew to be tall and thin as an adult or perhaps she has an eating disorder.  While it is generally not acceptable to delete observations from your data without good reason it is interesting to see how the analysis changes when this girl is excluded from the study.  This was done the resulting model obtained via backward elimination is identical to the one above.  The summary of the final model with the outlier deleted is shown below.

Regression Summary with Outlier Deleted

[image: image61.emf]
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 The plots below are called Effect Leverage Plots.  They are equivalent to a more commonly employed graphical device called an Added Variable Plot (AVP).   These plots show the relationship between the response (SOMA) and each of the predictors adjusted for the other terms in the model.  The negative estimated coefficients for HT2 and STR9 supported by the negative adjusted relationships for these terms.  If the dashed red lines do not completely contain the horizontal blue line then the term is deemed significant. Clearly weight at age 9 has the strongest adjusted relationship with somatotype.

[image: image64.emf]


A plot of the actual somatotype values (Y) vs. the fitted values (
[image: image65.wmf]Y
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) from the model is shown below.  The R-Square = .62 (or 62%) is the square of the correlation between Soma Actual and Soma Predicted.  RMSE is an estimate of the standard deviation of somatotype given the age 2 and 9 measurements used in the final model.
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� EMBED Equation.3  ��� 





The same numeric summaries, parameter estimates, and test results are contained as part of the standard output.  The plot at the top is NOT a scatter plot of Y vs. X.  It is a plot of the actual Y values vs. the predicted values from the regression model.  The stronger the trend exhibited the better the fit.  It is essentially a visualization of the R-square for the fitted model.





You can save 95% Confidence Intervals for E(Y|X) to the data spread sheet by selecting Mean Confidence Interval.








You can save 95% Prediction Intervals for Individual Y values to the data spread sheet by selecting Indiv Confidence Interval.





� EMBED Equation.3  ���





The proportion or percentage of variation explained by the regression of Length (Y) on Age (X) is given by the R-Square = .547 or 54.7%





The amount of unexplained variability in Systolic BP (Y) taking Diastolic BP (X) into consideration is given by the RMSE (root mean square error).  This is an estimate of the SD(Systolic BP|Diastolic BP).





Y variable





X variables go here.





In cases where we have multiple values of the response for some of the X values we will be given the results of the Lack Of Fit test.  If p-value here is small it can indicate that our model does not adequately model the mean of the response variable Y.  For example, if we fit line to clearly nonlinear relationship.  In cases where there is significant lack of fit the plot of the residuals vs. the fitted values will generally show some non-linear trend.





Mild outliers





This is equivalent to saying the X is not useful for explaining Y.  Thus the results of these two tests are identical in every way!





Mild outliers





Studentized residuals are essentially the residuals divided by the estimated standard deviation (RMSE) � EMBED Equation.3  ���.  Thus the studentized residual can be interpreted as a z-score.  Approx. 95% of the studentized residuals should fall between -2 and 2.  Extreme studentized residual values can indicate that a given observation is an outlier.





What are the major changes we see?
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