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We report the development of a robust and general model for the prediction of melting points. It is based
on a diverse data set of 4173 compounds and employs a large number of 2D and 3D descriptors to capture
molecular physicochemical and other graph-based properties. Dimensionality reduction is performed by
principal component analysis, while a fully connected feed-forward back-propagation artificial neural network
is employed for model generation. The melting point is a fundamental physicochemical property of a molecule
that is controlled by both single-molecule properties and intermolecular interactions due to packing in the
solid state. Thus, it is difficult to predict, and previously only melting point models for clearly defined and
smaller compound sets have been developed. Here we derive the first general model that covers a
comparatively large and relevant part of organic chemical space. The final model is based on 2D descriptors,
which are found to contain more relevant information than the 3D descriptors calculated. Internal random
validation of the model achieves a correlation coefficient ofR2 ) 0.661 with an average absolute error of
37.6 °C. The model is internally consistent with a correlation coefficient of the test set ofQ2 ) 0.658
(average absolute error 38.2°C) and a correlation coefficient of the internal validation set ofQ2 ) 0.645
(average absolute error 39.8°C). Additional validation was performed on an external drug data set consisting
of 277 compounds. On this external data set a correlation coefficient ofQ2 ) 0.662 (average absolute error
32.6 °C) was achieved, showing ability of the model to generalize. Compared to an earlier model for the
prediction of melting points of druglike compounds our model exhibits slightly improved performance,
despite the much larger chemical space covered. The remaining model error is due to molecular properties
that are not captured using single-molecule based descriptors, namely both inter- and intramolecular
interactions and crystal packing, for which examples of and reasons for outliers are given.

1. INTRODUCTION

The melting point of a compound, which denotes its
transition from solid to liquid state and vice versa, is one of
its fundamental characteristics. It can be used e.g. for rapid
determination of purity and identity of a substance in organic
synthesis and also for the prediction of other properties such
as boiling point or water solubility.1,2 Since in particular water
solubility is important in the pharmaceutical industry (for
example as a determinant of intestinal absorption) the reliable
prediction of melting points is, apart from the purely
scientific point of view, also hugely useful in practice.

We can make an assumption that melting points of
different compounds can be estimated based on the “mo-
lecular similarity principle” which states that structurally
similar molecules tend to have similar properties.3,4 Nonethe-
less, mainly due to ignorance of the solid-state properties,
predictions of melting points are generally more difficult than
the prediction of related properties such as boiling points.5,6

Polymorphism, the formation of different crystal habits of

otherwise identical compounds, as well as phase transitions
within the solid state, such as into liquid crystalline states,
show that one compound is not necessarily associated with
only one, clearly defined melting point. Every anomaly in
e.g. heat capacitysor a different propertyscan give rise to
a different state of the system. Transitions into the liquid-
crystalline state are indicated if part of the translational
symmetry of the crystal is lost and relatively fast rotations
around one axis of the aligned molecules occur. An estimated
5% of organic compounds pass through a liquid-crystalline
state before assuming a liquid state at rising temperature,7

increasing the complexity of the problem.

In general the melting point of a substance depends on
single-molecule properties and the spatial arrangement of
molecules in the solid state (their packing), both of which
influence the strength of intermolecular interactions.1,8 For
organic molecules hydrogen-bond donors and acceptors are
considered to be the dominating intermolecular forces.1 The
larger the molecules, the more important induced dipole
interactions become since electrons in larger molecules are
generally easier to polarize.
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The influence of different molecular parameters on melting
points has already been subject to earlier research.9,10 For
an isotopological data set comprising simple molecules
(which were monatomic rare gases, diatomic, trigonal,
pyramidal, and tetrahedral structures) it was found that
polarizability and dipole moment were capable of explaining
variations in melting points and boiling points.9 This is
intuitively plausible since polarizability and dipole moments
correspond to induced and static partial spatial charges which
in turn influence intramolecular interactions that are impor-
tant determinants of the melting point.

Bergstrom et al.10 investigated the influence of molecular
properties (descriptors) on melting points for a comparably
large (277 compounds) and diverse drug data set. They
attempted both to determine the relative importance of
descriptors for predicting melting points and to develop a
classification as well as a correlation model. A total of 612
(121 after elimination of skewed variables) 2D and 3D
descriptors were employed in combination with PLS (partial
least squares) for this purpose. It was found that hydrophilic
as well as polar surface areas increase melting point, while
nonpolar surface area reduces it. This could be explained
by more stable crystal structures via intermolecular interac-
tions which is in agreement with the findings by Charton.9

In addition, ring structures and rigidity were found to increase
the melting point, whereas structures dominated by chains
and generally more flexible structures tended to have lower
melting points.

Earlier work on melting point prediction focused on very
restricted classes of compounds, e.g. on oligoribonucleo-
tides11 in combination with a neural network or alkanes
containing between 10 and 20 carbon atoms in combination
with topological indices and nonlinear regression.12 A “Group
Vector Space” method for the prediction of melting points
was applied to the prediction of boiling points of hydrocar-
bons.13 For a series of 42 anilines an equation containing
five parametersshydrogen-bond donor ability, hydrophobic
substituent constants, molar refractivity, the Sterimol pa-
rameters B2, and an indicator variable for meta-substitutions
achieved good correlation.14 For 1,2,3-diazaborines charge
and size/weight were confirmed as determinants of the
melting point, along with the sum of different Randic
connectivity indices.15 Using experimentally determined
solubility data it was possible to estimate melting points
reliably for a small (81 compounds) but relatively diverse
data set, comprising mainly (partly atypical) drug compounds
such as steroids.16 Predictive models were also developed
for the melting points of different classes of ionic liquids17,18

and substituted benzenes.19 Among the more general methods
are the ones by Jain and Yalkowsky5 and Zhao and
Yalkowsky.20 The former5 predicted, among other properties,
melting points for 405 organic compounds but only took into
account “rigid, non-hydrogen-bonding aromatic” structures
which does not include most of today’s organic compounds
and drugs. The latter20 predicted melting points for 1040
aliphatic compounds with a variety of functional groups, but
it in turn excluded aromatic entities from the model which
are present in many of today’s chemicals and drugs.

In this work we developed an artificial neural network
(ANN) based melting point model that differs from previous
approaches in three ways.

Firstly, a large and diverse data set of 4173 compounds
was used which includes compounds ranging from small
unsubstituted hydrocarbons to heavily functionalized het-
erocyclic structures, examples of which are given in Figure
1. To our knowledge, this is the most diverse data set
employed yet for melting point prediction, which covers a
large region of (relevant) chemical space.

Secondly, feature selection was performed via principal
component analysis and selection of only those components
with the largest eigenvalues. This step reduces dimensionality
of the problem while retaining the information content of
the descriptors. Interpretability of the model was not feasible
anyway due to high correlations between many of the
descriptors employed, as it is often the case if a very high
number of initial descriptors are used.

Thirdly, an artificial neural network was used for model
building. A neural network was favored over linear tech-
niques to allow for the modeling of nonlinear relationships
between descriptor space and output variable. Again, linear
regression using a large number of (correlated) variables can
be misleading if interpreted; in addition poorly understood
theoretical models of melting do not provide sufficient
support for the assumption of linear descriptor-property
relationships.

Selection of training, test, and validation sets are crucial
in the construction of an internally consistent model that is
in addition able to generalize to previously unseen com-
pounds. Leave-one-out (LOO) cross validation is generally
considered not to be sufficient for model validation; in
addition to leave-multiple-out protocols the employment of
an external validation set is recommended.21 Thus we employ
a two-step validation protocol. The model is first validated
internally on the data set comprising 4173 compounds (the
“principal data set”) by using separate training (n ) 2087),
test (n ) 1043), and validation sets (n ) 1043). In addition,
an external drug data set of 277 compounds is used to gauge
generalizability on an important subclass of compounds
(drugs), which only represents part of the principal data set.
The compounds of the external validation set were not used
at any stage of the model building process.

In the following section 2, we describe the data set, the
calculation, and selection of descriptors as well as the
computational methods employed. In section 3 we present
our results which are discussed fully in section 4. The final
section 5 concludes our work.

2. MATERIALS AND METHODS

(a) Data Sets.4173 structures with melting points were
extracted from the Molecular Diversity Preservation Inter-
national (MDPI) database22 possessing melting points in the
range between 14°C and 392.5°C. Apart from the exclusion
of purely inorganic substances it was attempted to collect a
data set as diverse as possible in order to obtain a broadly
applicable model. Structures with melting point ranges of
larger than 5°C were excluded from the MDPI database as
well as structures containing heavy metals (Sn, Se) and those
sublimating or decomposing.

Global molecular properties of compounds in the data set
vary within large ranges: molecular weight of the compounds
used was between MWmin ) 84.1 g/mol and MWmax ) 815.6
g/mol, the number of heavy atoms between 6 and 59, and
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the (calculated) molar refractivity between 2.0 cm3 and 19.4
cm3. More detailed information about the data set is given
in Table 1, also including information on SlogP23 (which
uses an atom contribution method for the calculation of logP),
and the molecular dipole moment using the AM1 Hamil-
tonian.24 This data set was used for internal validation of
the model, and it is publicly available including structures,
melting points, calculated properties, and principal compo-
nent analysis factor scores (see Supporting Information).

For external validation, 277 drugs with melting points
extracted from the Merck index compiled by Bergstrom et
al. were used10 that were not included in the principal data
set. For this external data set, the influence of molecular

parameters on the melting points has been established10 based
on PLS analysis25 of 121 (left after exclusion of variables
too skewed from a set of 612 variables) descriptors calculated
by Molconn-Z26 and the AstraZeneca in-house-software
Selma, employing either 2D, 3D, or both 2D and 3D
descriptors. This data set is used as an external validation
set here. Correlation coefficients and 7-fold cross-validated
correlation coefficients obtained by Bergstrom et al.10 as well
as root-mean-square errors (RMSE) are given in Table 2.

(b) Descriptors. Structures were obtained in SD format
from the MDPI database.22 3D-structures were generated
using Concord.27,28 All subsequent steps were performed in
MOE2004.03.29 Salts were removed using the “Wash Mol-

Figure 1. Fifteen sample training set compounds, reflecting diversity of the data set used with respect to size and chemical features present
in the structures.

Table 1. Characterization of the 4173 Compound Principal Data Set, Comprising Structures of Very Different Properties Which Capture a
Large Area of Relevant Chemical Space

melting
point/°C

molecular
weight/g/mol

number of
heavy atoms SlogP

molar
refractivity/cm3

dipole moment
(AM1)/Debye

minimum 14 84.1 6 -6.0 2.0 0.005
maximum 392.5 815.6 59 12.8 19.4 250.8
mean 166.3 318.7 22.3 3.4 8.5 4.8
standard deviation 64.6 105.0 7.2 1.9 2.7 9.4
1. quartile 118 243.3 17 2.2 6.6 2.4
2. quartile 163 309.8 22 3.3 8.3 3.8
3. quartile 210.5 376.5 27 4.6 10.2 5.5
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ecules” option, checking the options “Add Explicit Hydrogen
Atoms”, “Set Atom Ionization to Formal Charge”, and
“Deprotonate Acids and Protonate Bases”. Structures were
minimized using the MMFF94 force field,30 preserving
existing chirality. Partial charges were calculated for all
structures using the PM3 Hamiltonian, checking the options
“Optimized Geometry” and “Adjust Hydrogens and Lone
Pairs as required”. In a subsequent step, all 203 2D and
alignment-independent 3D descriptors from MOE were
calculated from the optimized structures. The 2D descriptors
include physical properties (such as charge, van der Waals
volume, and molecular refractivity), subdivided surface areas
(atomic contributions to logP and molecular refractivity),
counts of elemental atom types and of bond types, Kier/
Hall connectivity and kappa shape indices, topological
indices (Wiener index and Balaban index), pharmacophore
feature counts (number of acidic and basic groups and
hydrogen bond donors and acceptors), and partial charge
descriptors. The conformation-independent 3D descriptors
include potential energy terms (such as total potential energy
and contributions of angle bend, electrostatic, out-of-plane,
solvation, etc. terms) and surface area, volume, and shape
descriptors (among them water accessible surface area, mass
density, and principal moments of inertia).

(c) Model Construction. Models were constructed sepa-
rately for 2D descriptors only, for 3D descriptors only, and
for the whole descriptor space spanned by 2D and 3D
descriptors. To reduce dimensionality of the feature space,
principal component analysis was performed using the
statistical software R.31 All structures were projected onto
principal components space, and the first 30 principal
components were used for further analysis. Feed-forward
back-propagation artificial neural networks were built using
the Neural Network toolbox of Statistica 632 following the
general procedure below. (The final optimal model was
different in every descriptor space, and it is given in the
Results section.)

First, model building employing the data set comprising
4173 compounds was performed using separate training
(n ) 2087), test (n ) 1043) and validation sets (n ) 1043)
with randomly chosen compounds. The classification error
was defined by entropy with a linear regression output
function. Nodes were initialized by a Gaussian distribution
with a mean of zero and a standard deviation of one. The
learning rate was fixed at 0.01 and the momentum at 0.3.
Presentation order of cases was shuffled each epoch with
no weight decay regularization. Input nodes with fan-out
weights below 0.05 were subject to pruning. Back-propaga-
tion33 training was performed for 100 iterations, followed
by conjugate gradient optimization of weights until no
improvement prediction on the test data set occurred. The
final network architecture and training parameters differed

between the 2D, 3D, and combined 2D/3D data sets (see
Results section for details). Network performance was
measured on training set, test set, and internal validation set.

Second, the network constructed in the first step was used
to predict melting points of the external drug validation set
of 277 compounds. Correlation coefficient as well as average
absolute errors and RMSE values were determined for each
descriptor space used.

3. RESULTS

(a) Analysis of Chemical Space.Virtually all correlations
between descriptor variables are significant atp < 0.05 which
made us believe that principal component analysis is
indicated in order to decorrelate variables. Variable factor
loadings obtained by PCA are shown in Figure 2, distin-
guished between 2D and 3D descriptors. In two dimensions
2D and 3D descriptors still seem to convey slightly different
information, and associated highest scoring contributing are
variables given in Table 3.

Component 1 of the full descriptor set PCA explains
32.61% of the variance and it is defined by the size of the
molecule, positive partial charge, and polarizability, on one
hand, and the total molecular and electronic energy of the
system on the other (descriptors belonging to these properties
possess factor loadings> 0.70). Total molecular and
electronic energy are closely related to the size of the
molecule but point in opposite directions due to a negative
sign. Component 2 explains 12.81% of the variance, and it
is defined by polar and negative surface areas in the one
direction and fractional hydrophobic water accessible surface
area in the other. Component 3 explains 7.61% of the
variance, and it distinguishes between positively and nega-
tively charged surface areas. Thus, the first three principal
components are strongly correlated to properties we might
call size, polarity, and sign of surface area partial charge.

Factor scores of cases (representations of structures in
principle component space) using 2D descriptors only are
given in Figure 3. We restricted this figure to the PCA of
2D properties since for the final model they were found to
outperform both 3D descriptors and the full set of 2D and
3D descriptors. The definition of the principal axes still

Table 2. Correlation Coefficients and Root Mean Square Errors of
the External Validation Set, as Obtained from 612 (121 after
Exclusion of Skewed Variables) 2D and 3D Descriptors and Partial
Least Squares Analysis by Bergstrom et al.10

model R2 Q2
RMSE
train/°C

RMSE
test/°C

2D 0.56 0.53 36.9 51.7
3D 0.31 0.30 46.1 50.3
2D/3D 0.57 0.54 36.6 49.8

Figure 2. Factor scores of the variables (descriptors), showing high
correlation of many of the descriptors used in this study (only partly
visible in two dimensions). High correlations led us to choose PCA
to decrease dimensionality of descriptor space.
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broadly agrees with the definitions of overall property space
(results not shown). Along with the scatterplot of all
compounds in the first two dimensions of PCA space,
examples of molecules found in different regions of chemical
space are given in Figure 3.

(b) Model Building and Performance. Results for the
model building step are given in Table 4, distinguishing
between dimensionality of descriptors used and showing
performance separately for training set, test set, and internal
validation set as well as for the external validation set.

For 2D descriptors, pruning and optimization of the
number of nodes in the hidden layer resulted in a 26-12-1
ANN which was trained using back-propagation for 100
iterations, followed by 94 iterations of conjugated gradient
optimization. Correlations between experimental and pre-
dicted melting points vary around 0.65 (0.645 and 0.662).

Absolute mean errors are between 37.6°C for the training
set and 39.8°C for the internal validation set. For the external
validation set an absolute mean error of 32.6°C was
obtained.

For 3D descriptors, pruning and optimization of the
number of nodes in the hidden layer resulted in a slightly
larger 30-17-1 ANN which was trained using back-propaga-
tion for 100 iterations, followed by 20 iterations of conju-
gated gradient optimization. Correlations between experi-
mental and predicted melting points vary around 0.5 (0.547
and 0.566) for all data sets except the external validation
set for which much worse a correlation of 0.327 was
obtained. Absolute mean errors are between 45.2°C for the
training set and 45.8°C for the internal validation set. For
the external validation set an absolute mean error of 50.5
°C was obtained.

Table 3. MOE Descriptors Spanning the First Three Principal Axes of the PCA Coordinate System, Using 2D and 3D Descriptorsa

principal
component

(PC)

explained
variance

(%) positive factor loadings> 0.7 negative factor loadings< -0.7

PC1 32.61 VAdjEq, PEOE_PC-, PC-, Q_PC-, diameter, VdistEq, VdistMa, weinerPath, weinerPol, a_count,
AM1_E, AM1_Eele, MNDO_E, a_IC, b_1rotN, b_count, b_rotN, b_single, chi0v, chi0v_C,
MNDO_Eele, PM3_E, PM3_Eele chi1v, chi1v_C, Weight, a_heavy, a_nC, b_heavy, chi0,

chi0_C, chi1, chi1_C, VadjMa, zagreb, PEOE_PC+,
PEOE_VSA_HYD, PEOE_VSA_NEG, PEOE_VSA_POS,
PC+, Q_PC+, Q_VSA_HYD, Q_VSA_NEG, Q_VSA_POS,
Kier1, Kier2, Kier3, KierA1, KierA2, KierA3, KierFlex,
apol, bpol, mr, a_hyd, vsa_hyd, SMR, vdw_area, vdw_vol,
E_Vdw, rgyr, ASA, ASA+, ASA_H, CASA+,
CASA-, FCASA+, VSA,Vol

PC2 12.81 PEOE_VSA_FPNEG, PEOE_VSA_FPOL,
PEOE_VSA_FPPOS, PEOE_VSA_POL,
PEOE_VSA_PPOS, Q_VSA_FPNEG,
Q_VSA_FPOL, Q_VSA_FPPOS,
Q_VSA_POL, Q_VSA_PPOS,
ASA_P, FASA_P

PEOE_VSA_FHYD, Q_VSA_FHYD,FASA_H

PC3 7.61 PEOE_VSA+0, FASA+ ASA-, FASA-

a 3D descriptors in italics. All descriptors possessing absolute factor loadings> 0.7 are given.

Figure 3. First two principal components of the principal MDPI data set (gray), compared to the external validation drug data set (black)
in 2D descriptor space. The first two principal axes explain 32.61% and 12.81% of the variance, respectively. Owing to the physicochemical
diversity of the principal data set (gray) it comprises a much larger area in chemical space than the, comparably, more homogeneous drug
data set.
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For the combination of 2D and 3D descriptors, pruning
and optimization of the number of nodes in the hidden layer
resulted in a 17-10-1 ANN which was trained using back-
propagation for 100 iterations, followed by 47 iterations of
conjugated gradient optimization. Correlations between
experimental and predicted melting points vary around 0.63
(0.628 and 0.648) for all data sets except the external
validation set for which a correlation of 0.544 was obtained.
Absolute mean errors are between 38.5°C for the training
set and 41.3°C for the internal validation set. For the external
validation set an absolute mean error of 43.1°C was
obtained.

Predicted vs observed melting points are shown in Figure
4 for the best performing model, employing 2D descriptors
only, for training set, test set, internal validation set, and
external validation set.

4. DISCUSSION

(a) Analysis of Chemical Space.The expectation that 2D
and 3D descriptors due to different descriptions of chemical
space also convey complementary information (Figure 2 and
Table 3) was not fulfilled. Although both 2D and 3D
descriptors seem to sample the combined 2D/3D property

chemical space well (given the smaller number of 3D
descriptors) employing only 2D descriptors gave consistently
superior results. The 3D descriptors do not seem to capture
as much information relevant to melting point prediction as
2D descriptors do (or alternatively, they introduce additional
noise).

Overall extracted principal components can be interpreted
in a chemically meaningful way, which corresponds to
important determinants of melting points as determined in
earlier work.6,10,34These are, broadly speaking, size, polarity,
and sign of surface area partial charge. Since the extraction
of principal components simply represents compounds in a
different coordinate system, without regard to the property
one attempts to predict, this means that representation in
reduced-dimensional space decreases the number of weights
in the neural network (or any other learning algorithm) while
at the same time retaining the relevant information of the
data. The principal component analysis of chemical space
spanned by the compounds (Figure 2, Table 3) shows the
following properties. Component 1 is defined by size of the
molecule, positive partial charge, and polarizability in one
direction and the total molecular and electronic energy of
the system in the opposite direction. This partly resembles

Table 4. Correlation Coefficients, Mean Absolute Errors, and RMSE Values Obtained from Neural Network Traininga

training set
(n ) 2089)

test set
(n ) 1042)

internalvalidation set
(n ) 1042)

external validation set
(n ) 277)

descriptors
network

architecture training R2

absolute
mean
error/

°C
RMSE/

°C Q2

absolute
mean
error/

°C
RMSE/

°C Q2

absolute
mean
error/

°C
RMSE/

°C Q2

absolute
mean
error/

°C
RMSE/

°C
2D 26-12-1 MLP BP 100, CG 94 0.661 37.6 48.0 0.658 38.2 49.3 0.645 39.8 50.4 0.662 32.6 41.4
3D 30-17-1 MLP BP 100, CG 20 0.566 45.2 54.9 0.547 45.6 55.5 0.564 45.8 56.0 0.327 50.5 60.6
2D/3D 17-10-1 MLP BP 100, CG 47 0.630 38.5 48.4 0.628 41.2 51.4 0.648 41.3 52.0 0.544 43.1 43.5

a Results are given for the training set, the test set, and the internal and external validation sets. (MLP) multilayer perceptron, BP) back
propagation, CG) conjugate gradient.).

Figure 4. Plot obtained for a training set (unfilled gray circles), a test set (gray squares), and an internal (black rhombi) and an external
validation set (black squares) between experimental and predicted melting points for the 2D descriptor set. For correlation coefficients see
Table 4.
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Pearson’s concept of “hard and soft acids and bases” where
large, polarizable compounds are classified as “soft” acids
and bases, and small less polarizable molecules are classified
as “hard” acids and bases.35 Size (or molecular weight) of a
molecule has been associated with its melting point from
early on,34 so its prominent representation in the first principal
component is consistent with earlier attempts at prediction
of melting point. The total electronic energy is also a
measure, closely negatively correlated, with the number of
atoms and thus electrons in the molecule. Component 2 is
defined by polar and negative surface areas on one hand and
fractional hydrophobic water accessible surface area on the
other. This corresponds to the popular notion of more
hydrophilic and more lipophilic compounds, so this axis
should also be crucial for the prediction of melting points.
Component 3 reflects both different molecular overall
charges and partial surface charges, which depends on acidic
and basic groups in the molecule as well as on the number
and type of heteroatoms.

Representations of structures in principle component space
(Figure 3) using 2D descriptors only are given in Figure 3.
It can be seen that the principal data set well encapsulates
the more physicochemically similar drug-only (external
validation) set. TheX-axis is mainly dominated by the size
of the molecule (larger molecules are placed to the left and
smaller molecules to the right). TheY-axis in turn is mainly
dominated by polarity of the molecule: less polar molecules
occur at the top of this representation of chemical space and
more polar and charged molecules at the bottom of the plot.
(Note that the two “outliers” to the left of the plot are
structurally very different with nonetheless similar melting
points: While one of the structures contains three ether-
linked benzene rings around a central benzene entity and
two methyl ester groups per auxiliary benzene, the second
structure contains nonaromatic hexose units and amide and
alcohol groups, which are not present at all in the first
structure. Melting points are 188°C and 135°C, respec-
tively.)

(b) Model Building and Performance. Results for the
model building step are given in Table 4, distinguishing
between dimensionality of descriptors used and showing
performance individually for the training set, the test set,
and the internal as well as for the external validation set.

Employing 2D descriptors only gave the best results on
all data sets with respect to correlation coefficients, absolute
mean error, and root-mean-square error. The network
employing 3D descriptors performed worst, with the network
using both 2D and 3D descriptors showing intermediate
performance. For the external validation set, an absolute
mean error of 32.6°C was obtained. On first sight it might
be surprising that the error on the external validation set is
better than that on the training set (37.6°C). This can be
explained by the fact that only part of the training set
compounds fall into the druglike area of the external
validation set, which is probably better modeled by the neural
network than more atypical areas of chemical space.

3D descriptors perform considerably worse than 2D
descriptors, and even the combination of 2D and 3D
descriptors gives worse results, in particular on the external
validation set. This corroborates the finding that the informa-
tion content (signal-to-noise ratio) of 2D descriptors is often

equivalent or even superior to that of 3D descriptors,36 which
in addition have to deal with conformational problems.

A plot of predicted vs observed melting points shown in
Figure 4 exhibits good correlation for the majority of
compounds of all data sets. Despite the temptation to remove
“outliers” and improve the model (in a statistical sense, that
is) we decided against this approach to retain a model as
universally applicable as possible.

We will now compare our model to earlier melting point
predictions. Zhao and Yalkowsky20 obtained a RMSE of
around 34°C in a 10-fold cross validation using only
aliphatic compounds. While our RMSE value is about 7°C
larger, this can still be seen as acceptable, given the diversity
of our data set. Jain and Yalkowsky5 report an average
absolute error of 23°C for 338 “rigid, non-hydrogen-bonding
aromatic” (training set) structures. Again, we also include
flexible, hydrogen-bonding, and nonaromatic structures
which gives an average absolute error about 10°C higher.
The data set used by Bergstrom10 is the most diverse data
set used for melting point prediction so far. Their values
compare to those obtained by us as follows. In our model
we obtain a slightly higher correlation coefficient on the
training set (R2 ) 0.661 for our model vsR2 ) 0.31-0.57
for the model of Bergstrom et al.) accompanied by similar
RMSE values (41.4°C vs 36.6-46.1 °C). For the internal
validation set, we obtain larger correlation coefficients (0.645
vs 0.30-0.53) with comparable RMSE values (50.4°C vs
49.8-51.7°C) as well. Both the correlation coefficient and
RMSE of our model excel on the external validation set,
with a correlation of 0.662 and a RMSE of 41.4°C vs a
correlation of between 0.30 and 0.54 and an RMSE value
of between 49.8 and 51.7. Thus our model seems to be able
to generalize to the prediction of melting points of previously
unseen compounds.

Despite overall sensible predictivity there remain com-
pounds (rather classes of compounds) whose melting points
are consistently over- or underpredicted. Examples of both
classes of compounds are given in Table 5, along with the
data set they belong to and the experimental as well as the
predicted melting point. Here we will only comment on some
of the examples.

The compounds showing overestimated melting points
(left-hand side of Table 5) are generally either heterocycles
containing multiple nitrogen atoms or nonaromatic steroids.
Melting points of steroids are probably predicted to be very
high due to their rigidity (low number of rotatable bonds).
While the trend that more rigid compounds possess higher
melting points is true in general, in case of steroids this leads
to overestimations of melting points. The reason why mainly
multiple-nitrogen heterocycles belong to the class of com-
pounds with overestimated melting points is yet unknown.

Compounds from Table 5 whose melting points are
underestimated (right-hand side of Table 5) mainly belong
to one of three classes: They are either conformationally
less flexible than might be guessed from the formal number
of rotatable bonds (compound 1), they are small molecules
which self-organize in the solid state and form stronger
interactions than typical for molecules of this size (com-
pounds 2, 4, and 5), or they are larger molecules whose
physicochemically similar neighbors are just in an area of
chemical space that does not allow for formation of the
interactions they are capable of forming (compound 6).
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Compound 1 from the right-hand side column of Table 5
formally possesses a large number of rotatable C-C bonds
and should thus melt at rather low temperatures. Due to
putative O-S interactions37,38 and electrostatic repulsion
between partially negatively charged oxygens, those rotations
are not allowed in practice. This shows that not only
intermolecular but also intramolecular interactions are not
sufficiently captured by the single-molecule based descriptors
employed here.

Compounds 2, 4, and 5 show high self-organization in the
solid state. This is most pronounced for 3,5-dimethylpyrazole,
which effectively exists as a trimer,39,40 hugely influencing
the melting point. Compound 2, possessing both aliphatic
alcohol and primary amine function, can be assumed to show
strong charge interactions between those functionalities since
they possess very similar pKa’s, leading to partial deproto-

nation of the alcohol and partial protonation of the amine
function and thus Coulombic interactions.

Terminal ethyne groups, as in compound 6, may become
involved in CtC-H/π(arene) and CtC-H/π(CtC) inter-
molecular interactions such as in ethnylbenzenes.41 While
ethnylbenzene possesses a melting point of-45 °C, lower
than benzene itself, the polysubstituted benzenes show much
higher melting points: 1,4-diethnylbenzene melts at 97°C
and 1,3,5-triethnylbenzene at 104°C, respectively. While
in ethnylbenzene CtC-H/π(arene) interactions dominate,
the di- and trisubstituted analogues are dominated by
CtC-H/π(CtC) interactions, leading to zigzag arrays and
helical chains, respectively.41 One or both of those interaction
types probably also occurs in the case of compound 6.

Finally, the work by Bergstrom et al.10 shall briefly be
commented on and put in context with the work performed
here. Both approaches have in common that only single-
molecule properties are considered, neglecting information
about solid-state packing. As shown above, in addition certain
intramolecular interactions are not captured by the descriptors
employed. While Bergstrom et al. deleted 491 out of 612
descriptors due to skewedness,10 we chose to use artificial
neural networks instead, which are often able to capture
nonlinear properties, thus helping to reduce the influence of
skewed variables. In a later step, Bergstrom et al.10 inves-
tigated the influence of each descriptor on the melting point.
While the question of which properties influence the melting
point is of course of huge relevance, it seems problematic
if, firstly, the majority of descriptors is deleted, and, secondly,
the remaining parameters are highly correlated. The question
turns up then whether the PLS components with the largest
weights are really those whichsin a physical senses
influence melting points, or whether they are just properties
that are highly correlated to them. Since highly correlated
descriptors are difficult to interpret anyway, we chose instead
to perform PCA to remove correlation of descriptors and,
as mentioned above, a nonlinear modeling technique not to
run into problems with “strange” behavior of descriptor
variables.

So what does the current work teach us, apart from
producing a model that works in a practical sense? Single-
molecule physicochemical space should be sufficiently
captured by the more than 100 descriptors employed here
in combination with decorrelation techniques and a nonlinear
modeling approach. Thus, we assume that the modeling
errors that remain are due to intra- and intermolecular
interactions and that here we encounter the theoretical
performance barrier of predicting melting points using single-
molecule descriptors. The solid-state packing is influenced
by factors that can be outside of the simple description of
the structure of the molecule itself: e.g. the solvent from
which a material is crystallized, which can lead to poly-
morphs with substantially different melting points. It is thus
apparent that different polymorphic forms pose a theoretical
upper limit on the prediction of melting points one can hope
to achieve. Thinking the other way around, using the model
developed here for the estimation of melting points while
the experimental value is already known opens up a new
possibility: To gauge intra- and intermolecular interactions
in the solid state, compared to the “average” intra-/
intermolecular interactions of a molecule of a given size.
Overestimated melting points, as shown in some examples,

Table 5. Examples of Structures Whose Melting Points Where
Grossly Over- and Underestimateda

a Reasons for wrong predictions are mainly the lack of information
about both intermolecular and intramolecular interactions (frozen
degrees of rotational freedom, see text), which can only be known from
the solid-state structure. On the other hand, deviations from predicted
values can be used to gauge the extent of intramolecular interactions.
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correspond to smaller interactions than expected from the
training set, while underestimated melting points indicate
formation of oligomers or other forms of higher self-
organization.

5. CONCLUSIONS

We present a more generally applicable method for the
prediction of melting points for diverse compound data sets,
ranging from small, unsubstituted hydrocarbons to large,
heavily substituted macrocycles. Using a data set comprising
4173 structures extracted from the MDPI database with
melting points between 14°C and 392.5°C, PCA in
combination with an artificial neural network is able to
achieve internal consistency and external predictivity of the
model.

Compared to an earlier model for the prediction of melting
points of druglike compounds, which was based on several
hundred descriptors in combination with partial-least squares
regression, our model exhibits superior performance, despite
the much more diverse training set. The root-mean square
error on the external validation set is reduced from 51.7°C
to 41.4°C, indicating that the model is generally applicable
for melting point prediction of a wide variety of organic
compounds.

There exist two main reasons for large outliers which are
inter- as well as intramolecular interactions. Intermolecular
interactions depend on the arrangement of compounds in the
solid state which is not taken into account by single-molecule
descriptors. Sometimes small structural changes cause new
interactions and thus a different solid-state structure to occur,
which is not captured by our method. Small heterocycles
are a typical class of compounds for which very low melting
points are predicted mainly due to their lightness, but where
experimental melting points are much higher due to self-
organization processes (for example the formation of oligo-
mers). Similar observations can be made with arene/alkyne
systems, where terminal ethyne groups may or may not lead
to CtC-H/π(arene) and CtC-H/π(CtC) interactions of
varying strength, depending on the particular compound.

On the other hand, intramolecular interactions may give
rise to underestimations of melting points. A molecule with
many rotatable bonds is assumed by the model to possess a
rather low melting point. Still, if some of the rotational
degrees of freedom are frozen due to intramolecular interac-
tions (sulfur-oxygen interactions or electrostatic repulsion
in the example presented here) the actual melting point may
be much higher than the predicted one.

The interpretation of PLS weights as physical factors
influencing melting points (but also other properties) appears
problematic if a large number of variables are first excluded
from analysis and the remaining variables are highly cor-
related. Here we follow the route of decorrelation via PCA
in combination with a nonlinear modeling technique to
alleviate those problems. Due to the large number of
descriptors used we can hope that single-molecule physico-
chemical space to be covered sufficiently well. The remaining
model error seems to be due to inter- and intramolecular
interactions, so in combination with nonlinear techniques we
seem to encounter the theoretical performance limit of single-
molecule descriptor based melting point predictions. In-
versely, employing a melting-point model, the prediction can

be used to gauge solid-state interactions in cases where the
experimental melting point is already known: Molecules
whose melting points are overpredicted show weaker inter-
molecular interaction in the solid state than similarly sized
molecules on average. Molecules whose melting points are
underpredicted show stronger intermolecular interactions in
the solid state which may be due to oligomerization processes
or other self-organization processes. Examples for both
classes of compounds are given.

Finally, the model we present is able to give a very fast
estimate of the melting point of a substance. Whether the
deviation of our model from the value observed in experi-
ment is acceptable in practice always depends on the
particular setting it is applied in.
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