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1    Introduction 

Kidney transplantation is widely accepted as the preferred treatment for the majority of patients 
with end stage renal disease [11]. Patients who experience kidney failure can survive on dialysis 
for extended periods of time; however, dialysis is both time intensive and expensive. Not only do 
patients grow physically weaker during their time on dialysis, but the treatments cost insurance 
providers, often Medicare, $51,000 annually per patient [7]. In addition, dialysis is not a viable 
long-term survival option for patients with kidney failure [5]. With the high success rate of 
kidney transplants, more patients are being encouraged to explore and pursue kidney 
transplantation as a treatment for end stage renal disease.  
 Although the number of patients added to the deceased donor waiting list continues to 
increase, the rate at which organs become available remains relatively constant. There are 
currently over 99,000 patients on the deceased donor kidney waiting list in the United States. 
These kidney patients represent just over 80% of the total population of patients on the organ 
waiting list. Each year doctors perform roughly 14,000 kidney transplants, yet the number of 
patients on the waiting list continues to rise, leaving an annual gap of roughly 4,000 between the 
number of patients added to the list and transplants performed [9]. Thus, the world of 
transplantation is faced with a limited supply and increasing demand problem for a very unique 
commodity. As a result, alternative avenues need to be explored and utilized in order to more 
closely meet the need for organ donors.  

Often the best option for patients on the deceased donor waiting list is to explore live 
donor kidney transplantation. Patients who receive live donor kidneys have a significantly 
shorter wait time for transplantation than deceased donor kidney recipients [1]. In addition, live 
donor kidneys, on average, have five years greater functional life expectancy than deceased 
donor kidneys [3]. Live donor kidneys are often easier to match because a high percentage of the 
willing donors are family members of the patient, and thus have a higher probability of being a 
suitable match. As live donors are considered the best option for patients in need of kidney 
transplants, it becomes important to identify potential willing live donors for these patients. 
Proponents of organ donation continue to support many initiatives to increase the number of 
willing live donors.   

As initiatives attempt to increase the willingness of individuals to donate, it is important 
not to overlook a population of already willing donors who are turned away because they are not 
suitable matches for their intended recipients. Around 35% of people who volunteer to donate a 
kidney are not utilized because the individuals are not matches for their intended recipients [11]. 
The incompatibilities between potential pairs often stem from differences in blood type, but can 
also result from a number of other factors leading to high potential for organ rejection. This 
group of volunteers represents a population of people who are willing and ready to donate but, 
up until recent years, have not otherwise been utilized. In an attempt to employ this pool of 
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donors, doctors have developed certain antirejection therapies, which allow for transplants to 
cross existing incompatible barriers. These techniques are only used in a limited number of 
transplant centers, as they carry risk in the administration, and the implementation requires 
certain expertise not widely mastered. At centers where the therapies are utilized, the process 
offers an alternative for hard to match patients, who would otherwise not be able to find a match. 
However, this may not be the best route for the general population of patients. Instead, if the 
patients and their non-matching willing donors are pooled together, the organs can be 
redistributed through a series of matches, which allow all the recipients in the group to receive a 
kidney. This type of matching, often referred to as kidney paired donation, relies on the 
willingness of potential donors to give kidneys as long as their intended recipients receive 
acceptable kidneys in return.

 
Figure 1.  A two-way kidney paired donation exchange 

An example of kidney paired donation is shown in Figure 1. This is a two-way exchange 
with two donors and two recipients, and represents the smallest number of patients possible to 
carry out an effective exchange under the kidney paired donation model. On the left side of 
Figure 1, donor 1 volunteers to donate to recipient 1, and the dotted line from the donor to the 
recipient represents intent to donate. Below donor 1 and recipient 1, an identical line connects 
donor 2 and recipient 2. Two pairs are formed between this group of four people, thus it can be 
said that a matching exists. However, both donors are not compatible matches for their intended 
recipients, due to some factor (in this basic example, blood type is used). Yet, donor 1 is an 
adequate match for recipient 2 and donor 2 is an adequate match for recipient 1. Therefore, as 
shown on the right image of Figure 1, if the donors agree to an arranged switch and each give a 
kidney to the intended recipient of the other donor, then both recipients are able to receive 
kidneys that match their blood types. This reassignment strategy can be applied to groups with 
larger numbers of patients, and it is in these cases with complex potential matches that 
opportunity exists for graph theory to play a significant role.  
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Using this type of exchange as our basis, we move to section 2, where we cover 
important graph theory concepts needed build our allocation strategies. Topics covered in section 
2 include: bipartite graphs, perfect matchings, and minimum weight matching. In section 3, we 
introduce the Hungarian Algorithm for finding the minimum weight matching in a weighted 
bipartite graph, which serves as the basis for the allocation strategies we develop. Section 4 
explores the ethical implications of using mathematical models to allocate kidneys. In this same 
section we propose Monty’s Dilemma which focuses on the differences between predicted 
outcomes for patients within the context of a favorable group result, and the need to balance 
equity across patients within the group while still optimizing the resource. In section 5, we 
incorporate measures of spread to the analysis of matchings; in doing so, we introduce two 
original algorithmic alternatives to the Hungarian Algorithm. In section 6, we explain the 
methodology for comparing the results from 1,000 random trials using the three test algorithms. 
The results are analyzed in section 7, which support the proposition that the minimum weight 
matching algorithm does not always produce the best matching for a group of donors and 
recipients. We conclude with section 8, which places our result in the greater context of limited 
resource allocation. 

2    Graph Theory Formulation 
Graph Theory provides us with a highly effective way to examine organ distribution and other 
forms of resource allocation. In a given graph, each vertex will represent an individual patient 
(donor or recipient), with each edge representing a potential for transplantation between a donor 
and a recipient. Figure 2 shows a graph with four donor-recipient pairs. The edges reveal which 
donors are potential matches for which recipients. 

  
Figure 2.  Potential matches in a four-way kidney paired donation exchange  
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The graphs used to represent the relationships between donors and recipients are bipartite 
graphs, since the vertices can be divided into two distinct vertex sets where no two vertices in the 
same set are adjacent to one another. Transplantation relies on a natural bipartition of donors and 
recipients, as the donors can only donate to recipients and the recipients can only receive organs 
from donors.   

From our graph of potential matches, we want to find a subgraph in which every vertex in 
the group of donors is paired with exactly one vertex in the group of recipients. Such a subgraph 
is called a perfect matching. Figure 3 shows two possible perfect matchings for the graph of all 
potential matches in Figure 2. 

Figure 3.  Two possible matchings from the graph in Figure 2 

As can be seen in both examples from Figure 3, every vertex is paired with another in the 
opposite set of vertices, ie. donors are uniquely connected to recipients. In this way, we are given 
potential pairings that satisfy the compatibilities established in Figure 2. 

As many of these graphs produce several perfect matchings, it becomes important to 
establish a system to differentiate the various possible perfect matchings for each graph. In doing 
so, we can ultimately choose the best matching. Doctors use a number of factors to discern the 
goodness of fit for a donor and recipient pair. The compatibilities between these patients fall 
upon a spectrum. A more favorable match indicates a higher probability for a patient’s body to 
accept the organ. Factors that contribute to the favorability of a match include: blood type, HLA 
type, antigens, age, previous sensitization, and can even include considerations such as the 
ability and willingness of a patient to travel to other transplant centers for the procedure. In our 
model, these various classifications can be used in specialized scoring systems which rate the 
desirability of matches between potential donors and recipients. These scores can be added to the 
edges of the graphs to produce weighted bipartite graphs.  

The ways in which these pairings are scored can vary, and a decision must be made 
whether to use lower scores to represent more favorable matches, or higher scores to represent 
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more favorable matches. For this examination we chose to use a 20-point scale where a smaller 
score represents a more favorable match. Figure 4 shows a donor-recipient graph with weights 
added to the edges. 

  

Figure 4.  Graph from Figure 2 with weights added 

Figure 5 shows two different matchings from the graph in Figure 4: one with the sum of 
the edge weights equal to 30 and one with the sum of the edge weights equal to 25. Since lower 
weights predict more favorable outcomes, we prefer perfect matchings with lower total weights, 
so the matching on the right, with a total score of 25, is preferable. A minimum weight matching 
is a matching for which the sum of the total weight of the edges in the matching is as small as 
possible. Fortunately, there exist several algorithms for finding a minimum weight perfect 
matching within a graph. 

Figure 5.  Two potential matchings with weights from the graph in Figure 4 
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3    Optimal Matchings and the Hungarian Algorithm  

Several algorithms exist to find a minimum weight perfect matching within a graph. The various 
algorithms are often specific to certain types of graphs, and the Hungarian Algorithm is a 
relatively simple algorithm which can find the maximum or minimum weight matching in a 
weighted bipartite graph. The details for the Hungarian Algorithm can be found in Kocay and 
Kreher [6], and are omitted here. We apply the algorithm to the randomly generated weighted 
bipartite graph with 8 donors and 8 recipients in Figure 6. The weights corresponding to the 
edges in Figure 6 are shown in Table 1 below. 

Figure 6.  Randomly generated 8x8 weighted bipartite graph of donor and recipient pairings  

The capital letters on the left of Table 1 represent the donors, while the lowercase letters 
at the top of the columns represent the recipients.  

 a b c d e f g h 
A  12 5 15 3 12  9 
B 9  9 5  3 11 8 
C 7 3  2  3 13 3 
D     12 15 17 17 
E  13 7 9  8 11  
F 3 4 8  17   17 
G   19   9  18 
H 5 14  8     

Table 1. Matrix representation of weighted bipartite graph in Figure 6 
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In order to run the algorithm we must have a complete bipartite graph, so all the spaces in 
the matrix must be assigned scores. We fill in all the empty spaces with dummy values. In this 
case we use 20, because it is the highest possible score in our scoring system and represents no 
match between the patients. The result of adding the dummy values is shown in Table 2.  

 a b c d e f g h 
A 20 12 5 15 3 12 20 9 
B 9 20 9 5 20 3 11 8 
C 7 3 20 2 20 3 13 3 
D 20 20 20 20 12 15 17 17 
E 20 13 7 9 20 8 11 20 
F 3 4 8 20 17 20 20 17 
G 20 20 19 20 20 9 20 18 
H 5 14 20 8 20 20 20 20 

Table 2. Matrix representation of weighted bipartite graph with dummy values 

We are now able to run the Hungarian Algorithm on this matrix. (The Step-by-step 
process of running the Hungarian Algorithm on this matrix is given in Montgomery [10]). The 
minimum weight perfect matching for this set of donor/recipient pairs is given in matrix form in 
Table 3 (with optimal weights shown in red text) and in graphical form in Figure 7.   

 a b c d e f g h 
A  12 5 15 3 12  9 
B 9  9 5  3 11 8 
C 7 3  2  3 13 3 
D     12 15 17 17 
E  13 7 9  8 11  
F 3 4 8  17   17 
G   19   9  18 
H 5 14  8     

Table 3. Matrix representation of the optimal matching from Table 1 
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Figure 7.  Graphical representation of the optimal matching from Table 1 

The matrix in Table 3 and the graph in Figure 7 represent the optimal matching of the 
randomly generated graph in Figure 6. Each of the edges in the matching represents a pairing 
between a donor and a recipient, and thus all of the recipients are assigned a live donor. It is 
widely accepted that the above graph is the “best” possible matching for the weighted bipartite 
graph because it gives the perfect matching with the lowest total score (in this case 53). 
However, we feel that the current system overlooks certain favorable matchings and we ask to 
expand the definition of “best” matching to incorporate more than just the lowest possible overall 
score of the edges in the graph.  

4    Ethical Considerations 

Algorithms such as the Hungarian Algorithm are used in situations where the overall score of the 
group is the principal concern. The solution given by the Hungarian Algorithm is at first an 
obvious option for assigning matchings of donors and recipients for transplantation. Yet the 
consideration of individual patients in the kidney paired donation process adds an additional 
layer to the decision of determining the best matching for a given graph. Consider the matching 
given by the Hungarian Algorithm in Figure 7. We know that this is the lowest possible score for 
the entire group, but it includes a 17, which is not an attractive score. Especially when this score 
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of 17 is considered in the context of the group where two recipients receive pairings with a value 
of 3, the person who receives the score of 17 will likely not be satisfied with the matching.   
 The group of patients as a whole must be taken into account, as doctors look to maximize 
utility with the organs available for transplantation. Thus, the important consideration should be 
finding the matching which gives the best result for the group as a whole. However, in this 
situation, each individual has a strong interest in his or her score. As such, the recipients are 
intent on receiving the best possible match for themselves. The donors who agree to participate 
in the exchange also have a vested interest in the scores of their intended recipients. This is the 
rationale behind the dilemma that serves as the centerpiece of this examination. 
 
Monty’s Dilemma: 

A Minimum Weight Bipartite Matching Algorithm can give the best overall matching for 
the group of vertices, but does not always give the most equitable matching across 
individual vertices. 
 

 In the context of paired kidney donation, it is important that equal opportunity be taken 
into consideration for all members of the exchange. If a donor’s intended recipient is given a 
pairing which is significantly less favorable than the other recipients in the matching, it is 
possible that the donor and recipient will not agree to be a part of the process. Perfect equity is 
not feasible in most situations, but attempting to give all pairs a relatively equal score will likely 
increase the satisfaction of the individuals who would otherwise receive less favorable scores at 
the expense of a better score for the group as a whole. Thus, with Monty’s Dilemma in mind, we 
consider several alterations to the Hungarian Algorithm that attempt to include equity between 
individual scores. 
 

5    Considering Equity: Modifying the Hungarian Algorithm 
In the context of this examination, when assessing the goodness of fit for the various possible 
matchings, three metrics are taken into account: total score, variance, and range. The reason for 
including the total score is explained earlier, as it shows the best results for the group as a whole. 
The variance and range of the scores in a given matching are the values by which we have 
chosen to measure how close the scores are to one another. Although they each measure slightly 
different aspects of the spread of scores, together they provide a more complete picture of the 
differences between the values. Thus, total score is our measure of utility whereas range and 
variance are used to measure equity.  

Figure 7 shows the minimum weight perfect matching, given by the Hungarian 
Algorithm, for the example in Section 3. Underneath the graph in Figure 7, we see that the total 
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score of this matching is 53, the range is 14 (with a high of 17 and a low of 3), and the variance 
of the eight weights in this matching is 19.   
 In addition to the preexisting Hungarian Algorithm, we propose two new algorithms, 
which account for these three measurements (range, variance, and total score) to varying degrees. 
For consistency, we test these algorithms on the same eight by eight matrix shown in both Figure 
6 and Table 1. Each of the proposed algorithms begins with an adjustment made to the matrix set 
of edge weights to account for different priorities in outcomes, and then relies on the Hungarian 
Algorithm as the principal means for reducing the graph to a perfect matching. We have termed 
this process of adjusting the weights prior to running the algorithm front-end manipulation.    
 
5.1.    Minimum Difference From The Mean Algorithm  

The Hungarian Algorithm is known to give the optimal solution for the group in terms of 
minimal total score. We developed the Minimum Difference from The Mean Algorithm to give 
us a quantitative measure of the other extreme: the most equitable solution for the individuals. 
We do this by finding the matching with the smallest total variation (subject to integer round 
off). This algorithm focuses specifically on selecting a matching with edges whose weights are 
closest to the mean weight of all edges in the original graph. The algorithm ignores total score 
and instead attempts to reduce both the range and the variance.   

 

   Minimum Difference from The Mean Algorithm 
 

 
 
 

We illustrate the algorithm using the graph in Figure 6, with its matrix representation 
(with dummy values added) in Table 2. The mean of all the scores is 13.8, so we subtract 13.8 
from all the scores in the matrix and take the absolute value to produce the matrix in Table 4. As 
the algorithm only works with integer values, we round each score in Table 4 to the nearest 
integer, producing the matrix in Table 5. 
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Table 4. The matrix of absolute values of differences between the scores and the mean 
 

Table 5. Matrix with scores rounded to nearest integer 

 Table 5 represents the last step in the front-end manipulation portion of the Minimum 
Difference from The Mean Algorithm. Next we apply the Hungarian Algorithm to the matrix, 
and produce the matching shown in Table 6 and Figure 8.  

 a b c d e f g h 
A  12 5 15 3 12  9 
B 9  9 5  3 11 8 
C 7 3  2  3 13 3 
D     12 15 17 17 
E  13 7 9  8 11  
F 3 4 8  17   17 
G   19   9  18 
H 5 14  8     

Table 6. Minimum Difference from The Mean Algorithm results in matrix form 
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Figure 8.  Minimum Difference from The Mean Algorithm results in graph form 

We see in the outcome given at the bottom of the graph in Figure 8 that the total score for 
this matching is 105, the range is 10, and the variance is 10.86. As expected, the weights of 
edges from this matching are closer together than when the Hungarian Algorithm was used, 
resulting in both a reduced range and variance. However, the individual scores are much higher 
and this leads to a significantly higher total score for the matching. In using the Minimum 
Difference from The Mean Algorithm, the cost of bringing the values closer together has a 
disproportionally adverse impact on the overall score of the group of patients. This is not a trade-
off we are willing to make and we can do better. 

5.2    Standard Deviation Cutoff Algorithm 

We now have an algorithm to give the minimum total score and an algorithm to give minimum 
variation. Our goal is to find an algorithm that prioritizes lower scores, since low is clearly 
better, while also giving some consideration to equity. After experimenting with multiple ideas, 
we developed the Standard Deviation Cutoff Algorithm. 

Like the Minimum Difference from The Mean Algorithm, the Standard Deviation Cutoff 
Algorithm attempts to reduce the range and variance. However, this algorithm gives preference 
to the smaller scores over the larger scores and in doing so places a greater emphasis on finding a 
matching which balances equity and total score. The algorithm begins by finding the interval 
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created by extending one standard deviation above and one standard deviation below the mean of 
all the scores. Scores that fall within this interval remain unchanged, but all scores that fall 
outside of this interval are doubled. This method essentially eliminates values that are greater 
than one standard deviation above the mean because the doubling has a much greater effect on 
larger values. It brings the remaining values closer together, as doubling smaller values has less 
of an effect, and the values that were one standard deviation below the mean are still in 
consideration under the subsequent steps of the algorithm.  
 
    Standard Deviation Cutoff Algorithm 

 

 

 

 
 

We apply this algorithm to the same graph shown in Figure 6 with its matrix 
representation (with dummy values added) in Table 2. The mean of the scores in the matrix is 
13.80 and the standard deviation of the scores is 6.45. This gives an interval from 7.34 to 20.25 
for values that fall within one standard deviation of the mean. Since the upper bound of one 
standard deviation from the mean is greater than 20, all the values greater than 7.34 will remain 
unchanged. However, in other graphs that were considered, the upper bound of one standard 
deviation from the mean was less than 20, and thus these larger values were doubled as well. The 
scores that fall more than one standard deviation from the mean are bolded and colored red in 
Table 7. Doubling the relevant scores produces the matrix in Table 8.   
 

 a b c d e f g h 
A 20 12 5 15 3 12 20 9 
B 9 20 9 5 20 3 11 8 
C 7 3 20 2 20 3 13 3 
D 20 20 20 20 12 15 17 17 
E 20 13 7 9 20 8 11 20 
F 3 4 8 20 17 20 20 17 
G 20 20 19 20 20 9 20 18 
H  5 14 20 8 20 20 20 20 

 

Table 7. All values more than one standard deviation from the mean are bolded and red 
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 a b c d e f g h 
A 20 12 10 15 6 12 20 9 
B 9 20 9 10 20 6 11 8 
C 14 6 20 4 20 6 13 6 
D 20 20 20 20 12 15 17 17 
E 20 13 14 9 20 8 11 20 
F 6 8 8 20 17 20 20 17 
G 20 20 19 20 20 9 20 18 
H 10 14 20 8 20 20 20 20 

Table 8. The matrix with selected scores doubled 
 
 Applying the Hungarian Algorithm to this matrix produces the matching shown in Table 
9 and Figure 9. 
 

 a b c d e f g h 
A  12 5 15 3 12  9 
B 9  9 5  3 11 8 
C 7 3  2  3 13 3 
D     12 15 17 17 
E  13 7 9  8 11  
F 3 4 8  17   17 
G   19   9  18 
H 5 14  8     

 

Table 9. Standard Deviation Cutoff Algorithm results in matrix form 
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Figure 9.  Standard Deviation Cutoff Algorithm results in graph form 

In this matching, we see that the total score is 56 with a range of 10 and a variance of 11. 
The values are once again closer together than in the Hungarian Method and thus have a smaller 
range and variance. In the previous algorithm, the reduction in range and variance came at a high 
cost to the total score. This result is remarkable in that the total score only increased by 3 points, 
while reducing the range by 4 points and the variance by 8 points. We also see that the worst 
pairing in this matching is 12, significantly better than the worst pairing of 17 using the original 
Hungarian Method. This initial case shows that the Hungarian Algorithm does not always 
provide the best matching in the context of kidney paired donation, and suggests the need for a 
larger scale comparison between the algorithms.  

6    Trial Parameters  

To test the effectiveness of each of the three algorithms (Hungarian, Minimum Difference from 
The Mean, and Standard Deviation Cutoff) we generated a large sample of random graphs. We 
decided to use bipartite graphs with sixteen vertices divided evenly between the two sets of 
vertices as this size reflects that of several kidney paired donation operations which have already 
been performed. Additionally, graphs of this size lend themselves to a greater number of 
potential matchings and a greater ability to differentiate between the effectiveness of the 
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algorithms. To simulate real populations of donor and recipient pairs, the edges connecting the 
donors with their intended recipients were given the score of 20, which is equivalent to no match 
as these patients would likely not participate in these swaps if they were already a match with 
their partner. A quarter of the remaining scores were also randomly assigned the value of 20 to 
reflect the national incompatibility rates of patients. The remaining 42 edges in the graph were 
randomly assigned scores between 1 and 20. We randomly generated 1,000 graphs following this 
format. We then ran all graphs through the three algorithms: Hungarian, Minimum Difference 
from The Mean, and Standard Deviation Cutoff. With these results, we produced charts 
comparing the total score, range, and variance, between the algorithms. 
 In several instances, a given algorithm produced more than one matching that had the 
same total score but different sets of edges comprising the matching. An example of this is 
shown in Figure 10 below which shows the weights of the eight selected edges as well as the 
total score, range, and variance for each case. Since two different matchings give the minimum 
total score, we must select which one to use and we term this approach to selection postoperative 
choice. Postoperative choice comes into play when there are multiple matching subgraphs which 
share the lowest possible score. In Figure 10, the choice would normally be trivial as both 
produce the same result for the group as a whole. However, in this case where we are focused on 
the importance of the individual vertices, and are attempting to introduce equity when possible, 
the selection holds real significance. When postoperative choice is an option, we choose the 
matching with the smallest variance as this demonstrates greater equity. For the matchings in 
Figure 10 we select the second option, producing a result with a significantly lower range and 
variance.  
  

9,3,10,10, 2, 2,11, 9[ ]  
Total Score: 56 Range: 9 Variance: 13.5 

 
8,6,10, 6, 5,8, 6, 7[ ]  

Total Score: 56 Range: 5 Variance: 2.25 
Figure 10.  Two matchings with equal total score; candidates for postoperative choice 

 
7    Results 
 
To test the algorithms, we ran 1,000 randomly generated samples. The three metrics we 
considered were range, variance, and total score for the matchings given by each of our three 
algorithms. The output for one of these samples is shown in Appendix A. The output from the 
first 100 randomly generated graphs can be found in the comprehensive version of this report 
[10]. For each sample, we needed to determine at what point the reduction in range and variance 
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did or did not warrant the increase in total overall score. In doing so, we subjectively selected 
which algorithm gave the more favorable result for each sample. 
 In the cases we examined, there were few results in which we couldn’t determine an 
outright best option for the group as a whole. We define the best matching as the matching which 
balances both equity and optimization. If the cost of introducing equity is too high for the overall 
score, then we default to the optimal score given by the Hungarian Algorithm. However, if we 
can improve the equity by using the Standard Deviation Cutoff Algorithm without increasing the 
overall score by too much, then we select this second algorithm. Despite the heavy reliance on 
computers to provide the outputs from the algorithms, the selection of the best matchings is 
ultimately made at the discretion of the person charged with interpreting the data. We believe 
that using an equation to determine the best fit would be too restrictive in certain cases, and feel 
that this case-by-case analysis and determination is in keeping with the needs and practices of the 
medical world. 

In our simulations, the Hungarian Algorithm provided the best combination of 
optimization and equity most often. Of the 1,000 randomly generated graphs, 10 could not 
produce a perfect matching, so these were not considered, giving us a total of 990 trials. The 
results are shown below in Table 10. The Hungarian Algorithm gave the best result 565 times, 
which accounts for 57.1% of the trials. There were 320 graphs for which the Hungarian 
Algorithm gave the same result as the Standard Deviation Cutoff Algorithm, accounting for 
32.3% of the trials. These graphs were placed in the Tie category, which indicates that either 
algorithm could have been used to give the best result. Finally, the Standard Deviation Cutoff 
Algorithm gave a better result in 105 graphs, which represent 10.6% of trials. 

 
 Counts Percentages 

Hungarian 565 57.1% 
Tie 320 32.3% 

Standard Deviation Cutoff 105 10.6% 
Total 990 

Table 10. Results for the three algorithms applied to 990 randomly generated graphs 

 To illustrate how we selected which of the algorithms produced the best result, we show 
an assortment of eight trials in Table 11. Of these eight trials, the result from the Hungarian 
Algorithm was selected in five, the result from the Standard Deviation Cutoff Algorithm was 
selected in two, and one produced a tie.  In Table 11, the selected method (or methods in the case 
of a tie) is shown in red text. 
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Random Graph Score Range Variance 
Optimal 51 12 13.23 

Min Difference 125 7 4.73 
StDev Cutoff 58 11 16.68 

    
Optimal 50 12 18.44 

Min Difference 108 4 2.25 
StDev Cutoff 50 12 18.44 

    
Optimal 35 7 6.24 

Min Difference 107 11 12.98 
StDev Cutoff 42 7 9.44 

    
Optimal 43 19 36.23 

Min Difference 129 4 1.86 
StDev Cutoff 53 19 47.23 

    
Optimal 35 14 21.23 

Min Difference 99 9 7.48 
StDev Cutoff 36 14 21.75 

    
Optimal 32 10 10.25 

Min Difference 90 12 11.43 
StDev Cutoff 33 6 6.11 

    
Optimal 52 18 32 

Min Difference 102 7 3.69 
StDev Cutoff 57 17 32.11 

    
Optimal 45 16 23.48 

Min Difference 121 5 3.61 
StDev Cutoff 47 11 14.36 

Table 11. Detailed results from 8 of the graphs produced in our sample of 990 
 
 Although the Hungarian Algorithm gave the best matching in the majority of cases, the 
Standard Deviation Cutoff Algorithm gave a more favorable matching in over 10% of the cases. 
The possibilities of deriving a matching using this and other methods are overlooked by limiting 
the matchings to only those produced by a minimum weight algorithm. Therefore, this 
examination recommends that when deciding which matching should be used for a group of 
patients, the results of both the Hungarian and Standard Deviation Cutoff Algorithms should be 
considered.  


