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INTRODUCTION 
 



 By definition, racial profiling is an actuarial method that conditions an individual’s prior 

probability of criminal behavior explicitly on his or her race, ethnicity, nationality, or religion 

(Press, 2010). Some think this is an effective method of catching criminals but other think using 

these stereotypes is unethical and prejudice. Racial profiling is controversial especially when we 

are unsure if it is even effective.   

BACKGROUND INFORMATION 

 The idea for this project came from the article, “To Catch a Terrorist: Can Ethnic Profiling 

Work?” by William Press.  He defines two different methods of selecting passengers for 

secondary screening within an airport setting. The two methods are uniform random sampling 

and importance sampling. Uniform random sampling is assuming that every passenger has the 

same probability of being a security threat. Using this method, a number of passengers are 

randomly selected for a secondary screening based upon allocated resources. Importance 

sampling uses a prior probability of being a security threat for each passenger. In the context of 

our problem, the prior probability could be based on many different things including race, 

religion, name, or even how they paid for their ticket. Using this method, resources still only 

allow a certain number of passengers to be give a secondary screening but if a person is thought 

as twice as likely to be a security threat over another passenger, they will stop this passenger 

twice as often.  

 Press argues that in an airport setting, racial profiling or as he calls it importance 

sampling is no more effective that simply randomly selecting passengers at catching security 

threats. He measured their effectiveness by mathematically deriving the average number of 

checkpoints a security threat could get through without being caught.   

Table 1- Effectiveness of Sampling Methods 

Uniform Sampling 

 
Importance Sampling 



  
 

Where N equals numbers of passengers to pass through security checkpoint, pi is the 

individual prior probability for each passenger, and M is the amount of passengers based on 

limited resources that can have a secondary screening.  This means for when resources allow for 

1 out of every 7 passengers to be given a secondary screening, a security threat will on average 

get through 6 checkpoints without being stopped or equivalently will be caught on the 7th 

checkpoint. This results in the same effectiveness for both methods.  

SIMULATION 

 The main goal of this project was to create a function that would run each of the 

sampling methods on a data set to replicate the results of Press’s article. Using R, I created a 

separate function for the different sampling methods that created a matrix of data, set up the 

screening method, ran multiple iterations, and then reported the results. The function needs the 

number of iterations, number of passengers, number of security threats, and the sample rates 

specified or can be run with the set values.  

Table 2 – Code for Function Set Up  

Uniform Sampling Importance Sampling 

# num.iter: number of simulation  
# num.p: number of people  
# num.t: number of security threats  
# k: sample rate 
uniform = function(num.iter=100, num.p=1000, 
num.t=10, k=5)  
 

# num.iter: number of simulation  
# num.p: number of people  
# num.t: number of security threats  
# k: sample rate 
significance = function(num.iter=100, num.p=1000, 
num.t=10, k=5) 

 

 The code to create the matrix of data differed between the two functions. For the 

uniform function, the data matrix had two columns. The first column was an ID column that 



went from 1 to number of passengers specified by the function. The second column was security 

threat status where 0 meant not a threat and 1 meant they were a security threat. To assign the 

security threat status to different passengers I used the sample function, which randomly 

selected ID’s from the first column of the matrix based upon the number of security threat 

specified by the function. I then assigned those randomly selected ID numbers a 1 in the security 

threat column.  

 For the Importance function, the data matrix had three columns. The first twos columns 

were the same as above, the ID number and the security threat status denoted by 0 or 1. The 

third column was a prior probability. For my project I decided to select half to be at a higher risk 

of being a security threat, and have their probability of being a security threat be double so they 

would be selected twice as often. To do this I used the sample function to select half of the 

number passengers and assigned them the higher probability. Then using the sample function 

again but this time using their prior probability to select ID numbers to be security threat. I then 

assigned those selected ID numbers a 1 in the security threat column.  

Table 3- Code for Setting Up Data Matrix 

Uniform Sampling Importance Sampling 

    #creates simulation data, ID and security threat status 
    #(0:no security threat, 1:security threat) 
    x=cbind(1:num.p, rep(0,num.p)) 
    whichrows=sample(1:num.p, num.t, replace = FALSE) 
    x[whichrows,2]=1 
   

    #creates simulation data 
    #ID, security threat status, probability a threat based 
on race 
    #security threat status: (0:no security threat, 1:security 
threat) 
    x=cbind(1:num.p, rep(0,num.p), 
rep((2/(3*num.p)),num.p)) 
    prob.t = sample(1:num.p, num.p/2, replace= FALSE) 
    x[prob.t,3]=(4/(3*num.p)) 
    whichrows=sample(1:num.p, num.t, replace = FALSE, 
x[,3]) 
    x[whichrows,2]=1 

 

 The next step after setting up the data matrix is to develop the screening processes. For 

both screening methods we set up a for loop, so it would continue to go through the cycle of 



checkpoints. We also set up an if statement that checks to see if there are an 1’s in the second 

column of the data matrix or equivalently if there are any security threats left. If there are 

security threats left in the data the loop continues, if not it stops. After this check it actually 

starts the screening process. It calculates how many people can be stopped at the current 

checkpoint by using the rate of sampling specified by the function. We then use the sample 

function to select ID’s that will be given a secondary screening. For the uniform function it is 

done randomly but for the importance function the row of the data matrix with prior 

probabilities is used in this selection. We then create a new data matrix that does not contain 

the security threats that were caught during that checkpoint. This data matrix is only updated if 

a security threat is caught during that checkpoint. The function also creates and updates an 

output matrix. This matrix has two columns, the first being the number of the checkpoint, and 

the second being how many security threats were caught at that checkpoint. We use this output 

matrix to calculate the average checkpoint a security threat was caught at during this iteration.   

Table 4 – Code for Screening Methods 

Uniform Sampling Importance Sampling 

#intializing matrix for each simulation 
    output.mat = cbind(rep(0,100), rep(0,100)) 
   
    #looping through checkpoints for a single simulation 
    for( i in 1:100) 
    {  
       
      #checks to see if all security threats are caught 
      if (sum(newx[,2] > 0))  
      { 
         
        #selecting how many passengers to sample 
        p=round(dim(newx)[1]/k,0) 
         
        #selecting which passengers to sample 
        r=sample(1:dim(newx)[1], p, replace=FALSE) 
 
        #updates matrix with checkpoint numbers 
        output.mat[i,1]=i 
         
        #updates matrix with number of security threats 
caught each checkpoint 

#intializing matrix for each simulation 
    output.mat = cbind(rep(0,100), rep(0,100)) 
     
    #looping through checkpoints for a single simulation 
    for( i in 1:100) 
    {  
       
      #checks to see if all security threats are caught 
      if (sum(newx[,2] > 0))  
      { 
         
        #selecting how many passengers to sample 
        p=round(dim(newx)[1]/k,0) 
         
        #selecting which passengers to sample using 
significance sampling 
        r=sample(1:dim(newx)[1], p, replace=FALSE, 
newx[,3]) 
         
        #updates matrix with checkpoint numbers 
        output.mat[i,1]=i 
         



        output.mat[i,2]=sum(newx[r,2]) 
 
        #updates newx if not all security threats are caught 
        if(output.mat[i,2] > 0)  
        {  
          newx = newx[-r[newx[r,2]==1],] 
        } 
      }    
    } 
    #keeps only the checkpoint where security threats 
were caught 
    output.mat.keep = output.mat[output.mat[,1]>0,] 
     
    #creates list of average number of checkpoint a 
security got through without  
    # being selected for each simulation 
    avg.sim[j] = 
sum(output.mat.keep[,1]*output.mat.keep[,2])/sum(x[,2
]) 
     
  } 
 

        #updates matrix with number of security threats 
caught each checkpoint 
        output.mat[i,2]=sum(newx[r,2]) 
         
        #updates newx if not all security threats are caught 
        if(output.mat[i,2] > 0)  
        {  
          newx = newx[-r[newx[r,2]==1],] 
        } 
      }    
    } 
    #keeps only the checkpoint where security threats 
were caught 
    output.mat.keep = output.mat[output.mat[,1]>0,] 
     
    #creates list of average number of checkpoint a 
security got through without  
    # being selected for each simulation 
    avg.sim[j] = 
sum(output.mat.keep[,1]*output.mat.keep[,2])/sum(x[,2
]) 
     
  } 
 

 

 The function contains another for loop to run iterations to get reliable results.  To report 

results the functions creates an array of the average checkpoint for each iteration. The array is 

updated after each iteration and is reported after the whole simulation. This array of averages 

can be used for analysis and to create graphs.  

Table 5 –Code for Running Iterations and Reporting Results 

 

Uniform Sampling Importance sampling 

#initializing array for simulation mean output 
  avg.sim=rep(-1,num.iter) 
   
  #looping through each simulation 
  for(j in 1:num.iter) 
  { 
     
    (code for setting up data matrix) 
 
    (code for setting up screening method) 
     
  } 
   
  #gives the average of all the simulations 
  avg.uniform = sum(avg.sim)/num.iter 

#initializing array for simulation mean output 
  avg.sim=rep(-1,num.iter) 
   
  #looping through each simulation 
  for(j in 1:num.iter) 
  { 
     
    (code for setting up data matrix) 
 
    (code for setting up screening method) 
     
  } 
   
  #gives the average of all the simulations 
  avg.sig = sum(avg.sim)/num.iter 



   
  #prints the average of all the simulations to use for 
statistical analysis 
  print(avg.uniform) 
   
  #returns an array of the averages for each simulation 
  return(avg.sim) 

   
  #prints the average of all the simulations to use for 
statistical analysis 
  print(avg.sig) 
   
  #returns an array of the averages for each simulation 
  return(avg.sim) 
 

 

DISSCUSSION 

 The main goal of this project is to replicate the results from the paper through 

simulation. To make sure the results are reliable, the examples will have varied samples rates 

and number of terrorists. The first example assumes 10,000 passengers for 365 iterations where 

1 in 1000 is a security threat with the sample rate varied.  

Table 6- Means for Example with Varied Sample Rate 

When Resources Allow for 1 out of 7 to be 
Given a Secondary Screening 

When Resources Allow for 1 out of 10 to be 
Given a Secondary Screening 

Method Mean Checkpoint Method Mean 

Theory 7 Theory 10 

Uniform Sampling 6.848 Uniform Sampling 10.03 

Importance Sampling 7.035 Importance Sampling 10.01 

 

 Table 6 shows the average checkpoint that a security threat would be caught at when I 

out of 7 can be given a secondary screening is checkpoint 7 and when 1 out of 10 can be given a 

secondary screening is checkpoint 10. The results for both levels of resources seems to agree 

with the averages Press mathematically derived in his article. I also wanted to look into varying 

the number of security threats to see how the results compared. This example assumed 10,000 

passengers for 365 iterations with a sample rate of 10 and varied number of threats.  

Table 7- Means for Example with Varied Security Threats 

Where 1 in 2000 is a security threat Where 1 in 100 is a security threat 



Method Mean Checkpoint Method Mean 

Theory 10 Theory 10 

Uniform Sampling 9.971 Uniform Sampling 9.863 

Importance Sampling 10.237 Importance Sampling 9.954 

 

 Table 7 shows that when the 1 out 10 people can be given a secondary screening, on 

average a security threat will be caught at the 10th checkpoint even when the number of 

security threats changes. It seems that as long as the sample rate stays the same, they average 

security checkpoint a security threat is caught at will not vary when the number of security 

threats vary. These results seem to agree with Press’s article.   

 Table 6 and 7 easily show that the means are similar across the methods of screening 

but they do not give any information about the distributions of the different methods. The 

probability distribution plots of the first example with varied sample rates will give us insight 

into the distributions, shown below in Figure 8.  

Figure 8-PDF Plots for Examples with Varied Sample Rate 

When Resources Allow for 1 out of 7 to be 
Given a Secondary Screening 

When Resources Allow for 1 out of 10 to be 
Given a Secondary Screening 

  

 



 Figure 8 shows the percentage of security threats that were caught at each of the 

security checkpoints. The distributions for the screening methods follow a very similar trend. 

Both distributions are skewed right. This means the data peaks before the average and then has 

a gradual decrease and the highest percentage of security threats caught is actually a few 

checkpoints before the average. The plots also show that the uniform sampling distribution 

peaks much higher than the importance sampling distribution for both sample rates. Another 

way to compare the distributions is with cumulative distribution plots, shown below in figure 9.  

Figure 9-CDF Plots of Example with Varied Sample Rate 

When Resources Allow for 1 out of 7 to be 
Given a Secondary Screening 

When Resources Allow for 1 out of 10 to be 
Given a Secondary Screening 

  

 

 Figure 9 shows the total percentage of security threats that are caught before and at the 

current checkpoint. The graphs reiterate that both of the screening methods have very similar 

distributions and that there are apparent trends across both sample rates. It is notable that the 

importance sampling method is actually more effective at catching potential security threats 

until a few checkpoints before the average checkpoint the security threats are caught at. After 

this checkpoint the sampling methods switch and uniform sampling is more effective until all of 

the security threats are caught.  



 Even though we know that there are specific trends that are apparent across sample 

rates, we do not know why these trends occur. For an extension of this project it would be 

interesting to look at what the theoretical standard deviations for each sampling method should 

be. Deriving the standard deviations could explain more about the distributions of the data. 

Another extension of this project could be to look into the best possible method of sampling. 

Press describes a method with in his article where the square root of the prior probability is 

used. He mathematically derived the average checkpoint a security threat would be caught for 

this method and his results state this would be the best possible method. It would be interesting 

to create a function for this method and compare the means along with the other sampling 

methods.  

CONCLUSION 

 We were successfully able to recreate the results from Press’s article through simulation 

within R. We were able to show that our simulation generated averages that seem to agree with 

the average checkpoint a security threat would be caught according to Press. Therefore, the 

results show importance sampling is no more effective than uniform random sampling within 

airport security. It is also interesting that even though the distributions follow very similar 

trends importance sampling is more effective until a few checkpoints before the average 

checkpoint a security threat would be caught at. After this checkpoint though, uniform sampling 

is more effective until all security threats are caught. It would be interesting to find out why the 

distributions behave this way and also to create a function for a sampling method that is more 

effective that uniform or importance sampling.  
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APPENDIX 



Uniform Sampling Code 

#Fuction runs a simulation to return the average number of checkpoint a security  
#threat gets though without being stopped 
# num.iter: number of simulation  
# num.p: number of people  
# num.t: number of security threats  
# k: sample rate 
uniform = function(num.iter=100, num.p=1000, num.t=10, k=5)  
{  
  #initializing array for simulation mean output 
  avg.sim=rep(-1,num.iter) 
   
  #looping through each simulation 
  for(j in 1:num.iter) 
  { 
    #creates simulation data, ID and security threat status 
    #(0:no security threat, 1:security threat) 
    x=cbind(1:num.p, rep(0,num.p)) 
    whichrows=sample(1:num.p, num.t, replace = FALSE) 
    x[whichrows,2]=1 
   
    #copies x into newx 
    newx=x 
 
    #intializing matrix for each simulation 
    output.mat = cbind(rep(0,100), rep(0,100)) 
   
    #looping through checkpoints for a single simulation 
    for( i in 1:100) 
    {  
       
      #checks to see if all security threats are caught 
      if (sum(newx[,2] > 0))  
      { 
         
        #selecting how many passengers to sample 
        p=round(dim(newx)[1]/k,0) 
         
        #selecting which passengers to sample 
        r=sample(1:dim(newx)[1], p, replace=FALSE) 
 
        #updates matrix with checkpoint numbers 
        output.mat[i,1]=i 
         
        #updates matrix with number of security threats caught each checkpoint 
        output.mat[i,2]=sum(newx[r,2]) 
 
        #updates newx if not all security threats are caught 
        if(output.mat[i,2] > 0)  
        {  
          newx = newx[-r[newx[r,2]==1],] 
        } 
      }    
    } 
    #keeps only the checkpoint where security threats were caught 
    output.mat.keep = output.mat[output.mat[,1]>0,] 
     



    #creates list of average number of checkpoint a security got through without  
    # being selected for each simulation 
    avg.sim[j] = sum(output.mat.keep[,1]*output.mat.keep[,2])/sum(x[,2]) 
     
  } 
   
  #gives the average of all the simulations 
  avg.uniform = sum(avg.sim)/num.iter 
   
  #prints the average of all the simulations to use for statistical analysis 
  print(avg.uniform) 
   
  #returns an array of the averages for each simulation 
  return(avg.sim) 
} 
 

Importance Sampling Code 

#Function runs a simulation to return the average number of checkpoint a security  
#threat gets though without being stopped 
# num.iter: number of simulation  
# num.p: number of people  
# num.t: number of security threats  
# k: sample rate 
significance = function(num.iter=100, num.p=1000, num.t=10, k=5)  
{  
  #initializing array for simulation mean output 
  avg.sim=rep(-1,num.iter) 
   
  #looping through each simulation 
  for(j in 1:num.iter) 
  { 
    #creates simulation data 
    #ID, security threat status, probability a threat based on race 
    #security threat status: (0:no security threat, 1:security threat) 
    x=cbind(1:num.p, rep(0,num.p), rep((2/(3*num.p)),num.p)) 
    prob.t = sample(1:num.p, num.p/2, replace= FALSE) 
    x[prob.t,3]=(4/(3*num.p)) 
    whichrows=sample(1:num.p, num.t, replace = FALSE, x[,3]) 
    x[whichrows,2]=1 
     
    #copies x into newx 
    newx=x 
     
    #intializing matrix for each simulation 
    output.mat = cbind(rep(0,100), rep(0,100)) 
     
    #looping through checkpoints for a single simulation 
    for( i in 1:100) 
    {  
       
      #checks to see if all security threats are caught 
      if (sum(newx[,2] > 0))  
      { 
         
        #selecting how many passengers to sample 
        p=round(dim(newx)[1]/k,0) 



         
        #selecting which passengers to sample using significance sampling 
        r=sample(1:dim(newx)[1], p, replace=FALSE, newx[,3]) 
         
        #updates matrix with checkpoint numbers 
        output.mat[i,1]=i 
         
        #updates matrix with number of security threats caught each checkpoint 
        output.mat[i,2]=sum(newx[r,2]) 
         
        #updates newx if not all security threats are caught 
        if(output.mat[i,2] > 0)  
        {  
          newx = newx[-r[newx[r,2]==1],] 
        } 
      }    
    } 
    #keeps only the checkpoint where security threats were caught 
    output.mat.keep = output.mat[output.mat[,1]>0,] 
     
    #creates list of average number of checkpoint a security got through without  
    # being selected for each simulation 
    avg.sim[j] = sum(output.mat.keep[,1]*output.mat.keep[,2])/sum(x[,2]) 
     
  } 
   
  #gives the average of all the simulations 
  avg.sig = sum(avg.sim)/num.iter 
   
  #prints the average of all the simulations to use for statistical analysis 
  print(avg.sig) 
   
  #returns an array of the averages for each simulation 
  return(avg.sim) 
} 

 

 

 

 

 

 

 


