Math 280 Problems for November 6

Pythagoras Level

1. Find conditions on the parameters a, b, c, and d so that

$$
f(x, y)=a \sin (x+y)+b \cos (x+y)+c \sin (x-y)+d \cos (x-y)
$$

can be written as $f(x, y)=g(x) h(y)$.
2. Find positive integers n and $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
a_{1}+a_{2}+\cdots+a_{n}=2012
$$

and the product $a_{1} a_{2} \cdots a_{n}$ is as large as possible.

Newton Level

3. If m and n are positive integers and $a<b$, find a formula for

$$
\int_{a}^{b} \frac{(b-x)^{m}}{m!} \frac{(x-a)^{n}}{n!} d x
$$

and use this to evaluate

$$
\int_{0}^{1}\left(1-x^{2}\right)^{n} d x
$$

4. Sum the series

$$
\sum_{i=1}^{\infty} \frac{36 i^{2}+1}{\left(36 i^{2}-1\right)^{2}}
$$

Hint: $\sum_{1}^{\infty} \frac{1}{i^{2}}=\frac{\pi^{2}}{6}$.

Wiles Level

5. Let A, B and C be real square matrices of the same size, and suppose that A is invertible. Prove that if $(A-B) C=B A^{-1}$, then $C(A-B)=A^{-1} B$.
6. Let f be a real-valued function with $n+1$ derivatives at each point of \mathbb{R}. Show that for each pair of real numbers $a, b, a<b$, such that

$$
\ln \left(\frac{f(b)+f^{\prime}(b)+\cdots+f^{(n)}(b)}{f(a)+f^{\prime}(a)+\cdots+f^{(n)}(a)}\right)=b-a
$$

there is a number c in the open interval (a, b) for which

$$
f^{(n+1)}(c)=f(c)
$$

