Math 280 Solutions for November 6

Pythagoras Level

1. (Missouri 1997 Session 1, \#3) Expansion of the sines and cosines gives

$$
f(x, y)=(a+c) \sin x \cos y+(a-c) \cos x \sin y+(b+d) \cos x \cos y+(d-b) \sin x \sin y
$$

So, if the factorization is possible,

$$
f(x, y)=(A \sin x+B \cos x)(C \sin y+D \cos y)
$$

or

$$
f(x, y)=A D \sin x \cos y+B C \cos x \sin y+B D \cos x \cos y+A C \sin x \sin y
$$

Thus we need to have

$$
\begin{aligned}
a+c & =A D \\
a-c & =B C \\
b+d & =B D \\
d-b & =A C .
\end{aligned}
$$

Hence,

$$
\frac{a+c}{d-b}=\frac{A D}{A C}=\frac{D}{C}=\frac{B D}{B C}=\frac{b+d}{a-c} .
$$

Therefore,

$$
a^{2}+b^{2}=c^{2}+d^{2}
$$

2. (Missouri 1997 Session 2, \#1) No a_{i} can be greater than 4 since one could increase the product by replacing 5 by $2 \cdot 3,6$ by $3 \cdot 3,7$ by $3 \cdot 4$, etc. There cannot be both a 2 and a 4 or three 2 's among the a_{i} since $2 \cdot 4<3 \cdot 3$ and $2 \cdot 2 \cdot 2<3 \cdot 3$. Also, there cannot be two 4's since $4 \cdot 4<2 \cdot 3 \cdot 3$. Clearly, no a_{i} is a 1 . Hence the a_{i} are 3 's except possibly for a 4 or for a 2 or for two 2 's. Since $2012=3 \cdot 670+2$, the only exception is a 2 and n $=670$.

Newton Level

3. (Missouri 1998 Session 1, \#3) Integration by parts once yields

$$
\int_{a}^{b} \frac{(b-x)^{m}}{m!} \frac{(x-a)^{n}}{n!} d x=\int_{a}^{b} \frac{(b-x)^{m-1}}{(m-1)!} \frac{(x-a)^{n+1}}{(n+1)!} d x
$$

So continuing we get

$$
\int_{a}^{b} \frac{(b-x)^{m}}{m!} \frac{(x-a)^{n}}{n!} d x=\int_{a}^{b} \frac{(x-a)^{n+m}}{(n+m)!} d x=\frac{(b-a)^{n+m+1}}{(n+m+1)!}
$$

Now

$$
\int_{0}^{1}\left(1-x^{2}\right)^{n} d x=\frac{1}{2} \int_{-1}^{1}(1-x)^{n}(x-(-1))^{n} d x=\frac{1}{2}(n!)^{2} \frac{2^{2 n+1}}{(2 n+1)!}=\frac{2 \cdot 4 \cdot 6 \cdots 2 n}{1 \cdot 3 \cdot 5 \cdots(2 n+1)}
$$

4. (Missouri 1998 Session 2, \#3) If S is the desired sum, then

$$
2 S=\sum_{i=1}^{\infty}\left(\frac{1}{(6 i-1)^{2}}+\frac{1}{(6 i+1)^{2}}\right)=\frac{1}{5^{2}}+\frac{1}{7^{2}}+\frac{1}{11^{2}}+\frac{1}{13^{2}}+\cdots
$$

Now using the hint we obtain

$$
\begin{aligned}
\frac{1}{2^{2}}+\frac{1}{4^{2}}+\frac{1}{6^{2}}+\cdots & =\frac{\pi^{2}}{24} \\
1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots & =\frac{\pi^{2}}{6}-\frac{\pi^{2}}{24}=\frac{\pi^{2}}{8} \\
\frac{1}{3^{2}}+\frac{1}{9^{2}}+\frac{1}{15^{2}}+\cdots & =\frac{\pi^{2}}{72}
\end{aligned}
$$

So

$$
2 S+1=1+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\frac{1}{11^{2}}+\frac{1}{13^{2}}+\cdots=\frac{\pi^{2}}{8}-\frac{\pi^{2}}{72}=\frac{\pi^{2}}{9}
$$

Thus

$$
S=\frac{\pi^{2}-9}{18}
$$

Wiles Level

5. (IMC 2009 Day $1 \# 2$) A straightforward calculation shows that $(A-B) C=B A^{-1}$ is equivalent to $A C-$ $B C-B A^{-1}+A A^{-1}=I$, where I denotes the identity matrix. This is equivalent to $(A-B)\left(C+A^{-1}\right)=I$. Hence, $(A-B)^{-1}=C+A^{-1}$, meaning that $\left(C+A^{-1}\right)(A-B)=I$ also holds. Expansion yields the desired result.
6. (IMC 1994 Day $2 \# 3)$ Set $g(x)=\left(f(x)+f^{\prime}(x)+\cdots+f^{(n)}(x)\right) e^{-x}$. From the assumption one gets $g(a)=g(b)$. Then there exists $c \in(a, b)$ such that $g^{\prime}(c)=0$. Replacing in the last equality $g^{\prime}(x)=(f(n+1)(x)-f(x)) e^{-x}$ we finish the proof.
