Math 280 Problems for September 4

Pythagoras Level

\#1 Find the determinant of the $n \times n$ matrix $A=\left[a_{i j}\right]$ where

$$
a_{i j}= \begin{cases}(-1)^{i-j} & \text { if } i \neq j \\ 2 & \text { if } i=j\end{cases}
$$

\#2 Consider a sequence of integers $1,3,2,-1, \ldots$, where each term is equal to the term preceding it minus the term before that. Whats the sum of the first 2009 terms?

Newton Level

\#3 If $\lim _{x \rightarrow \infty}\left(\frac{x+2 a}{x+a}\right)^{x}=8$, what is a ?
\#4 The following figure consists of infinitely many squares and circles, with a circle inscribed in each square and a square inscribed in each circle. The outermost square has side length 1. Find the total shaded area.

Wiles Level

$\# 5$ Let $f(x)$ be a function that is continuously differentiable on $[0,1]$, with the following properties:

- $f(0)=0$
- $f(1)=1$
- $x<f(x)<1$ for all $x \in(0,1)$.

Prove that for every positive integer n, there exist n distinct points $c_{1}, c_{2}, \ldots, c_{n}$ in $(0,1)$ such that

$$
f^{\prime}\left(c_{1}\right) f^{\prime}\left(c_{2}\right) \cdots f^{\prime}\left(c_{n}\right)=1
$$

\#6 Let $0<a<b$. Evaluate

$$
\lim _{p \rightarrow 0}\left(\int_{0}^{1}(b x+a(1-x))^{p} d x\right)^{\frac{1}{p}}
$$

