Math 280 Problems for September 4

Pythagoras Level

\#1
[Kansas Math Competition 2008 \#3] The matrix initially looks like this:

$$
\left(\begin{array}{cccccc}
2 & -1 & 1 & \cdots & (-1)^{n} & (-1)^{n-1} \\
-1 & 2 & -1 & \cdots & (-1)^{n-1} & (-1)^{n} \\
1 & -1 & 2 & \cdots & (-1)^{n} & (-1)^{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
(-1)^{n} & (-1)^{n-1} & (-1)^{n} & \cdots & 2 & -1 \\
(-1)^{n-1} & (-1)^{n} & (-1)^{n-1} & \cdots & -1 & 2
\end{array}\right)
$$

For each even $i>1$, add the first row to the $i^{\text {th }}$ row, and for each odd $i>1$, subtract the first row from the $i^{\text {th }}$ row. The result is the matrix:

$$
\left(\begin{array}{cccccc}
2 & -1 & 1 & \cdots & (-1)^{n} & (-1)^{n-1} \\
-1 & 1 & 0 & \cdots & 0 & 0 \\
1 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
(-1)^{n} & 0 & 0 & \cdots & 1 & 0 \\
(-1)^{n-1} & 0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

Now, for each even $i>1$, add the $i^{\text {th }}$ row to the first row, and for each odd $i>1$, subtract the $i^{\text {th }}$ row from the first row. The result is the matrix

$$
\left(\begin{array}{cccccc}
n+1 & 0 & 0 & \cdots & 0 & 0 \\
-1 & 1 & 0 & \cdots & 0 & 0 \\
1 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
(-1)^{n} & 0 & 0 & \cdots & 1 & 0 \\
(-1)^{n-1} & 0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

This has determinant $n+1$.
\#2
[Kansas Math Competition 2009 \#1] The sequence repeats: 1, 3, 2,-1,-3,-2, 1, 3, 2, . . Each six conseuctive terms sum up to 0 . Since 2009 is congruent to $5 \bmod 6$, the first 2009 terms have the same sum as the first 5 terms: $1+3+2-1-3=2$. So the answer is 2 .

Newton Level

[Kansas Math Competition 2008 \#1] $\lim _{x \rightarrow \infty}\left(\frac{x+2 a}{x+a}\right)^{x}=\lim _{x \rightarrow \infty}\left(\frac{1+2 a / x}{1+a / x}\right)^{x}=\frac{\lim _{x \rightarrow \infty}(1+2 a / x)^{x}}{\lim _{x \rightarrow \infty}(1+a / x)^{x}}=\frac{e^{2 a}}{e^{a}}=e^{a}=$ 8 , so $a=8$.
\#4
[Kansas Math Competition 2008 \#2] The figure can be decomposed into infinitely many figures similar to the following:
,
The total area of the triangle is $x^{2} / 2$. The shaded area A is one-fourth of the difference of a circle of radius x and a square of side length $x \sqrt{2}$, i.e., $A=\left(\pi x^{2}-2 x^{2}\right) / 4$. Therefore the, shaded area accounts for

$$
\frac{\left(\pi x^{2}-2 x^{2}\right) / 4}{x^{2} / 2}=\frac{\pi-2}{2}
$$

of the original figure. The total area is 1 , so the area of shaded region is $\frac{\pi-2}{2}$.

Wiles Level

\#5
[Kansas Math Competition $2008 \# 5$] Let f_{n} denote the composition of f with itself n times, i.e.,

$$
f_{1}=f, \quad f_{2}=f \circ f, \quad f_{3}=f \circ f \circ f, \ldots
$$

Each function f_{n} is continuously differentiable on $[0,1]$, with $f_{n}(0)=0, f_{n}(1)=1$. By the Mean Value Theorem, there exists $c \in(0,1)$ such that

$$
f_{n}^{\prime}(c)=\frac{f_{n}(1)-f_{n}(0)}{1-0}=1
$$

By Chain Rule,

$$
f_{n}^{\prime}(c)=1=f^{\prime}\left(f_{n-1}(c)\right) \cdot f^{\prime}\left(f_{n-2}(c)\right) \cdots f^{\prime}(f(c)) \cdot f(c) .
$$

So define c_{1}, \ldots, c_{n} by $c_{1}=c, c_{2}=f(c), c_{3}=f(f(c)), \ldots, c_{n}=f_{n-1}(c)$. Then the third condition provides that the c_{i} are distinct.
\#6
[Kansas Math Competition 2009 \#4] To evaluate the integral, make the change of variable $u=b x+a(1-x)$, $d u=(b-a) d x$ to get

$$
\left(\frac{1}{b-a} \int_{a}^{b} u^{p} d u\right)^{\frac{1}{p}}=\left(\frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}\right)^{\frac{1}{p}}=\exp \left(\frac{1}{p} \ln \left(\frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}\right)\right) .
$$

Now, to evaluate the limit as $p \rightarrow 0$, use L'Hopital's rule:

$$
\begin{aligned}
& \exp \lim _{p \rightarrow 0} \frac{\ln \left(\frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}\right)}{p} \\
= & \exp \lim _{p \rightarrow 0}\left(\frac{(p+1)(b-a)}{b^{p+1}-a^{p+1}}\right)\left(\frac{(p+1)(b-a)\left(b^{p+1} \ln b-a^{p+1} \ln a\right)-\left(b^{p+1}-a^{p+1}\right)(b-a)}{(p+1)^{2}(b-a)^{2}}\right) \\
= & \exp \lim _{p \rightarrow 0} \frac{(p+1)\left(b^{p+1} \ln b-a^{p+1} \ln a\right)-\left(b^{p+1}-a^{p+1}\right)}{\left(b^{p+1}-a^{p+1}\right)(p+1)} \\
= & \exp \lim _{p \rightarrow 0}\left(\frac{b^{p+1} \ln b-a^{p+1} \ln a}{b^{p+1}-a^{p+1}}-1\right) \\
= & \exp \left(\frac{b \ln b-a \ln a}{b-a}-1\right) \\
= & e^{-1}\left(\frac{b^{b}}{a^{a}}\right)^{1 /(b-a)} .
\end{aligned}
$$

