Math 280 Problems for September 4

Pythagoras Level

#1

[Kansas Math Competition 2008 #3] The matrix initially looks like this:

(2	-1	1		$(-1)^{n}$	$(-1)^{n-1}$	
-1	2	$^{-1}$	•••	$(-1)^{n-1}$	$(-1)^{n}$	
1	-1	2	•••	$(-1)^{n}$	$(-1)^{n-1}$	
:	:	:	;	:	:	ŀ
$(-1)^n$	$(-1)^{n-1}$	$(-1)^n$		2	-1	
$(-1)^{n-1}$	$(-1)^n$	$(-1)^{n-1}$		-1	2 /	1

For each even i > 1, add the first row to the i^{th} row, and for each odd i > 1, subtract the first row from the i^{th} row. The result is the matrix:

(2	-1	1		$(-1)^{n}$	$(-1)^{n-1}$	
	-1	1	0	• • •	0	0	
	1	0	1	•••	0	0	
	÷	÷	÷	:	:	:	•
	$(-1)^{n}$	0	0		1	0	
(-	$(-1)^{n-1}$	0	0		0	1 /	

Now, for each even i > 1, add the i^{th} row to the first row, and for each odd i > 1, subtract the i^{th} row from the first row. The result is the matrix

$\binom{n+1}{n}$	0	0		0	$0 \rangle$
-1	1	0		0	0
1	0	1		0	0
:	÷	÷	÷	÷	: ·
$(-1)^n$	0	0		1	0
$\begin{pmatrix} (-1)^n \\ (-1)^{n-1} \end{pmatrix}$	0	0		0	1/

This has determinant n + 1.

#2

[Kansas Math Competition 2009 #1] The sequence repeats: 1, 3, 2,-1,-3,-2, 1, 3, 2, . . . Each six consecutive terms sum up to 0. Since 2009 is congruent to 5 mod 6, the first 2009 terms have the same sum as the first 5 terms: 1 + 3 + 2 - 1 - 3 = 2. So the answer is 2.

Newton Level

[Kansas Math Competition 2008 #1]
$$\lim_{x \to \infty} \left(\frac{x+2a}{x+a}\right)^x = \lim_{x \to \infty} \left(\frac{1+2a/x}{1+a/x}\right)^x = \frac{\lim_{x \to \infty} (1+2a/x)^x}{\lim_{x \to \infty} (1+a/x)^x} = \frac{e^{2a}}{e^a} = e^a = 8,$$
 so $a = 8$.

#4

[Kansas Math Competition 2008 #2] The figure can be decomposed into infinitely many figures similar to the following:

The total area of the triangle is $x^2/2$. The shaded area A is one-fourth of the difference of a circle of radius x and a square of side length $x\sqrt{2}$, i.e., $A = (\pi x^2 - 2x^2)/4$. Therefore the, shaded area accounts for

$$\frac{(\pi x^2 - 2x^2)/4}{x^2/2} = \frac{\pi - 2}{2}.$$

of the original figure. The total area is 1, so the area of shaded region is $\frac{\pi-2}{2}$.

Wiles Level

#5

[Kansas Math Competition 2008 #5] Let f_n denote the composition of f with itself n times, i.e.,

$$f_1 = f, \quad f_2 = f \circ f, \quad f_3 = f \circ f \circ f, \ldots$$

Each function f_n is continuously differentiable on [0, 1], with $f_n(0) = 0$, $f_n(1) = 1$. By the Mean Value Theorem, there exists $c \in (0, 1)$ such that

$$f'_n(c) = \frac{f_n(1) - f_n(0)}{1 - 0} = 1.$$

By Chain Rule,

$$f'_n(c) = 1 = f'(f_{n-1}(c)) \cdot f'(f_{n-2}(c)) \cdots f'(f(c)) \cdot f(c).$$

So define c_1, \ldots, c_n by $c_1 = c$, $c_2 = f(c)$, $c_3 = f(f(c))$, \ldots , $c_n = f_{n-1}(c)$. Then the third condition provides that the c_i are distinct.

#6

[Kansas Math Competition 2009 #4] To evaluate the integral, make the change of variable u = bx + a(1 - x), du = (b - a)dx to get

$$\left(\frac{1}{b-a}\int_{a}^{b}u^{p}du\right)^{\frac{1}{p}} = \left(\frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}\right)^{\frac{1}{p}} = \exp\left(\frac{1}{p}\ln\left(\frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}\right)\right).$$

Now, to evaluate the limit as $p \to 0$, use L'Hopital's rule:

$$\begin{split} & \exp \lim_{p \to 0} \frac{\ln \left(\frac{b^{p+1} - a^{p+1}}{(p+1)(b-a)}\right)}{p} \\ & = & \exp \lim_{p \to 0} \left(\frac{(p+1)(b-a)}{b^{p+1} - a^{p+1}}\right) \left(\frac{(p+1)(b-a)(b^{p+1}\ln b - a^{p+1}\ln a) - (b^{p+1} - a^{p+1})(b-a)}{(p+1)^2(b-a)^2}\right) \\ & = & \exp \lim_{p \to 0} \frac{(p+1)(b^{p+1}\ln b - a^{p+1}\ln a) - (b^{p+1} - a^{p+1})}{(b^{p+1} - a^{p+1})(p+1)} \\ & = & \exp \lim_{p \to 0} \left(\frac{b^{p+1}\ln b - a^{p+1}\ln a}{b^{p+1} - a^{p+1}} - 1\right) \\ & = & \exp \left(\frac{b\ln b - a\ln a}{b-a} - 1\right) \\ & = & e^{-1} \left(\frac{b^b}{a^a}\right)^{1/(b-a)}. \end{split}$$