Math 280 Problems for September 11

Pythagoras Level

[New Jersey MAA 2009 Ind. \#3] Write $n=a_{1} b+a_{0}$ where $a_{0}, a_{1} \in\{0,1, \ldots, b-1\}$. Then $r_{b}(n)=a_{0} b+a_{1}$, thus

$$
n+r_{b}(n)=\left(a_{1}+a_{0}\right) b+\left(a_{0}+a_{1}\right)=(b+1)\left(a_{0}+a_{1}\right)
$$

So if $n+r_{b}(n)$ is a perfect square, $b+1$ must divide $a_{0}+a_{1}$. Thus there are $b-2$ pairs of digits that work:

$$
2(b-1), 3(b-2), \ldots,(b-1) 2
$$

[Putnam 2008 A2] Barbara. If Alan puts a number in the i th row j th column and i is even, then Barbara puts the same number in the $(i-1)$ th row j th column. If i is odd, then Barbara puts the same number in the $(i+1)$ th row j th column. In this way at the end there will be (at least) two identical rows, hence the determinant will be zero.

Newton Level

[NJ MAA 2009 Ind. \#7] Find the power series of $g(x)$ as follows:

$$
\begin{gathered}
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\cdots+\frac{x^{n}}{n!}+\cdots \\
g(x)=e^{x^{2}}=1+x^{2}+\frac{x^{4}}{2!}+\frac{x^{6}}{3!}++\frac{x^{8}}{4!}+\frac{x^{10}}{5!} \cdots+\frac{x^{n}}{n!}+\cdots
\end{gathered}
$$

The coefficient on x^{2010} must be $g^{(2010)}(0) / 2010$!, thus $g^{(2010)}(0)=2010!/ 1005$!.
[NJ MAA 2007 \#12] The sequence is increasing and bounded:
Increasing: $a_{2}>a_{1}$ and the function $f(x)=\sqrt{2}^{x}$ is increasing, thus $a_{n+1}=\sqrt{2}^{a_{n}}>a_{n}$.
Bounded: Induction shows $a_{n} \leq 2$.
Thus the sequence converges. Its limit satisfies $L=\sqrt{2}^{L}$. This has solutions $L=2$ and $L=4$. Since $a_{n} \leq 2$, we find that the limit is 2 .

Wiles Level

[Putnam 2008 A1] The function $g(x)=f(x, 0)$ works. Substituting $(x, y, z)=(0,0,0)$ into the given functional equation yields $f(0,0)=0$, whence substituting $(x, y, z)=(x, 0,0)$ yields $f(x, 0)+f(0, x)=0$. Finally, substituting $(x, y, z)=(x, y, 0)$ yields $f(x, y)=-f(y, 0)-f(0, x)=g(x)-g(y)$.
[NJ MAA 2009 Team \#4] First note that there are 2^{n-1} numbers which have n digits, each of which is a 0 or 1. So modulo grouping of the terms, this series is "less than" the series,

$$
\frac{1}{1}+2 \frac{1}{10}+4 \frac{1}{100}+8 \frac{1}{1000}+\cdots
$$

This new series converges (to $1 /(1-1 / 5)=5 / 4$), as it is a geometric series with ratio $1 / 5$. Therefore, by the Comparison Test, the original series must also converge. If one is troubled by the grouping of terms, there are a variety of ways to make the justification completely rigorous. For example, note that each partial sum of the original series is less than a partial sum of the geometric series, which is in turn less than $5 / 4$. Thus, the sequence of partial sums of the original is a bounded sequence, and clearly monotone increasing as all terms in the series are non-negative. Therefore, the Monotone Convergence Theorem would imply convergence of the original series.

