Math 280 Problems for September 18

Pythagoras Level

\#1. (a) Show that the sum

$$
1+2+3+\cdots+2009+2010+2009+\cdots+3+2+1
$$

is the square of an integer.
(b) Generalize the result in (a), with proof.
\#2. A game board consists of a linear path of 2010 squares, numbered from 1 to 2010. A game piece is initially on square 1 , and two players alternately move it. On each move a player advances the piece by $1,2,3,4,5$ or 6 squares. Thus, the first player advances the piece to square $2,3,4,5,6$ or 7 . The player who moves onto square 2010 wins. Describe a winning strategy for one of the players, and make clear that it wins.

Newton Level

\#3. Suppose that the function f satisfies $f^{\prime}(x)=1+f(x)$ for all x. If $f(2)=3$, find:
(a) $f^{(10)}(2)$ (where $f^{(10)}$ denotes the 10th derivative of f);
(b) $f(3)$.

Justify your answers.
\#4. Evaluate

$$
\lim _{x \rightarrow \infty} \int_{x}^{2 x} \frac{d t}{\sqrt{t^{3}+4}}
$$

and justify your answer.

Wiles Level

\#5. Prove that for every rational number a, the equation

$$
y=\sqrt{x^{2}+a}
$$

has infinitely many solutions (x, y) with x and y rational.
\#6.For a partition π of $\{1,2,3,4,5,6,7,8,9\}$, let $\pi(x)$ be the number of elements in the part containing x. Prove that for any two partitions π and π^{\prime}, there are two distinct numbers x and y in $\{1,2,3,4,5,6,7,8,9\}$ such that $\pi(x)=\pi(y)$ and $\pi^{\prime}(x)=\pi^{\prime}(y)$. [A partition of a set S is a collection of disjoint subsets (parts) whose union is S.]

