Math 280 Problems for September 18

Pythagoras Level

#1. (a) Show that the sum
\[
1 + 2 + 3 + \cdots + 2009 + 2010 + 2009 + \cdots + 3 + 2 + 1
\]

is the square of an integer.

(b) Generalize the result in (a), with proof.

#2. A game board consists of a linear path of 2010 squares, numbered from 1 to 2010. A game piece is initially on square 1, and two players alternately move it. On each move a player advances the piece by 1, 2, 3, 4, 5 or 6 squares. Thus, the first player advances the piece to square 2, 3, 4, 5, 6 or 7. The player who moves onto square 2010 wins. Describe a winning strategy for one of the players, and make clear that it wins.

Newton Level

#3. Suppose that the function \(f \) satisfies \(f'(x) = 1 + f(x) \) for all \(x \). If \(f(2) = 3 \), find:
(a) \(f^{(10)}(2) \) (where \(f^{(10)} \) denotes the 10th derivative of \(f \));
(b) \(f(3) \).

Justify your answers.

#4. Evaluate
\[
\lim_{x \to \infty} \int_x^{2x} \frac{dt}{\sqrt{t^3 + 4}}
\]

and justify your answer.

Wiles Level

#5. Prove that for every rational number \(a \), the equation
\[
y = \sqrt{x^2 + a}
\]

has infinitely many solutions \((x, y)\) with \(x \) and \(y \) rational.

#6. For a partition \(\pi \) of \(\{1, 2, 3, 4, 5, 6, 7, 8, 9\} \), let \(\pi(x) \) be the number of elements in the part containing \(x \). Prove that for any two partitions \(\pi \) and \(\pi' \), there are two distinct numbers \(x \) and \(y \) in \(\{1, 2, 3, 4, 5, 6, 7, 8, 9\} \) such that \(\pi(x) = \pi(y) \) and \(\pi'(x) = \pi'(y) \). [A partition of a set \(S \) is a collection of disjoint subsets (parts) whose union is \(S \).]