Math 280 Solutions for September 18

Pythagoras Level

\#1. [Iowa MAA 2005 \#2] (a) We may write the sum as the sum of two arithmetic progressions:

$$
1+2+3+\cdots+2005=\frac{2005 \cdot 2006}{2}
$$

and

$$
1+2+3+\cdots+2004=\frac{2004 \cdot 2005}{2}
$$

Then the sum of the two is

$$
\frac{2005(2004+2006)}{2}=2005^{2}
$$

(b) In general,

$$
\begin{aligned}
{[1+2+3+\cdots+(n-1)+n]+[(n-1)+\cdots+2+1] } & =\frac{n(n+1)}{2}+\frac{(n-1) n}{2} \\
& =\frac{n^{2}+n+n^{2}-n}{2} \\
& =n^{2}
\end{aligned}
$$

\#2. [Iowa MAA $2005 \# 4$] Player 2 has a winning strategy. Note that the player who moves to square 2003 wins, and the one who moves to 1996 can move next to 2003. In general the positions from which a win can be assured are numbers which, like 2010, are of the form $7 n+1$. When Player 1 advances the piece k squares from position $7 n+1$ (and this includes position 1), Player 2 moves it $7-k$ squares to $7 n+7=7(n+1)+1$. (Note that if the final number were of the form $6 n+r$ with $r=2 ; 3 ; 4$ or 5 , the first player could win by moving to square r on the first turn, or if $r=0$, to square 7 .)

Newton Level

\#3. [Iowa MAA $2005 \# 3$] (a) From $f^{\prime}(x)=1+f(x)$ we get $f^{\prime \prime}(x)=f^{\prime}(x)$, and by an easy induction, $f^{(n)}(x)=f^{\prime}(x)$ for all $n \geq 1$. Thus $f^{(10)}(x)=f^{\prime}(x)=1+f(x)$, and $f^{(10)}(2)=1+f(2)=4$.
(b) From $f^{\prime}(x)=1+f(x)$ we have $\frac{d y}{1+y}=d x$, so $\ln (1+y)=x+C$ for some constant C. Since $y=3$ when $x=2$ we have $C=\ln 4-2$, and

$$
x-2=\ln (1+y)-\ln 4=\ln \left(\frac{1+y}{4}\right)
$$

Putting $x=3$ gives us $\ln \left(\frac{1+y}{4}\right)=1$, so $(1+y) / 4=e$, and $y=4 e-1$.
\#4. [Iowa MAA $2005 \# 8$] For $x \leq t \leq 2 x$ we have

$$
0<\frac{1}{\sqrt{t^{3}+4}} \leq \frac{1}{\sqrt{x^{3}+4}}
$$

and therefore

$$
\begin{aligned}
0 & <\int_{x}^{2 x} \frac{d t}{\sqrt{t^{3}+4}} \\
& \leq \int_{x}^{2 x} \frac{d t}{\sqrt{x^{3}+4}} \\
& =\frac{1}{\sqrt{x^{3}+4}} \int_{x}^{2 x} d t \\
& =\frac{x}{\sqrt{x^{3}+4}}
\end{aligned}
$$

But

$$
\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{3}+4}}=0
$$

so

$$
\lim _{x \rightarrow \infty} \int_{x}^{2 x} \frac{d t}{\sqrt{t^{3}+4}}=0
$$

Wiles Level

\#5. [Iowa MAA $2005 \# 6$] It suffices to show that there are infinitely many rational pairs (x, y) with $y^{2}-x^{2}=a$ and $y>0$. Thus we want $a=(y-x)(y+x)$. Let b be any nonzero rational number. We will find rational x and y such that $y-x=b$ and $y+x=a / b$. Indeed, the solution of this pair of equations is $x=\left(a-b^{2}\right) / 2 b, y=\left(a+b^{2}\right) / 2 b$ and both x and y are rational. Moveover, different values of b yield different values of $y-x$, and therefore different pairs (x, y). It remains only to insure that $y>0$. For this it suffices that $b>0$ and $b^{2}>-a$, and it is clear that there are infinitely many rational values of b satisfying these conditions.
\#6. [Putnam 1995 B1] For a given π, no more than three different values of $\pi(x)$ are possible (four would require one part each of size at least $1,2,3,4$, and that's already more than 9 elements). If no such x, y exist, each pair $\left(\pi(x), \pi^{\prime}(x)\right)$ occurs for at most 1 element of x, and since there are only 3×3 possible pairs, each must occur exactly once. In particular, each value of $\pi(x)$ must occur 3 times. However, clearly any given value of $\pi(x)$ occurs $k \pi(x)$ times, where k is the number of distinct partitions of that size. Thus $\pi(x)$ can occur 3 times only if it equals 1 or 3 , but we have three distinct values for which it occurs, contradiction.

