Math 280 Problems for September 25

Pythagoras Level

\#1. Let x ; y ; z be real numbers such that

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}
$$

Prove that either $x+y=0$ or $y+z=0$ or $z+x=0$.
\#2. Seven people come to a party, each with his/her own coat. At the end of the party, the coats are randomly distributed to the people, one coat per person. What is the average number, over all $7!$ possibilities, of the number of people who get their own coat? For example, if there were only two people at the party, there would only be two possibilities - either both people would get back their own coat or each would get the other person's coat. This gives an average of $(2+0) / 2=1$, in this case.

Newton Level

\#3.Let g be the function defined by

$$
g(x)= \begin{cases}\frac{\sin (x)}{x} & x \neq 0 \\ 1 & x=0\end{cases}
$$

Let h be the function defined by $h(x)=\int_{x}^{\pi} g(t) d t$. Find the area of the region bounded by the curve $y=h(x)$, $x=0, x=\pi$, and the x-axis.
\#4. Evaluate the following limit:

$$
\lim _{n \rightarrow \infty} \frac{\left(2^{3}-1\right)\left(3^{3}-1\right)\left(4^{3}-1\right) \cdots\left(n^{3}-1\right)}{\left(2^{3}+1\right)\left(3^{3}+1\right)\left(4^{3}+1\right) \cdots\left(n^{3}+1\right)}
$$

Wiles Level

$\# 5$. All of the positive integers are printed, in order, on an infinite strip:

$$
1234567891011121399100101102
$$

Then, all zeroes are erased to give:

$$
12345678911112139911112
$$

Then all the spaces are removed and the tape is cut into 4-digit strips:

$$
\begin{array}{|l|l|l|l|}
\hline 1234 & 5678 & 9111 & 1213 \\
\hline
\end{array}
$$

Show that every single 4 -digit sequence, abcd, with $a, b, c, d \in\{1,2, \ldots 9\}$, appears on infinitely many strips.
$\# 6$. Let N_{n} denote the number of ordered n-tuples of positive integers $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ such that $1 / a_{1}+1 / a_{2}+\ldots+$ $1 / a_{n}=1$. Determine whether N_{10} is even or odd.

