## Math 280 Solutions for October 2

## Pythagoras Level

1. (Ohio MAA 2006 \#4) If

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{ll}
x & y \\
z & t
\end{array}\right)
$$

then after a direct calculation we get

$$
A B-B A=\left(\begin{array}{cc}
b z-c y & a y+b t-b x-d y \\
c x+d z-a z-c t & c y-b z
\end{array}\right) .
$$

The sum of the diagonal elements for $A B-B A$ is 0 , while the sum of the diagonal elements for the desired matrix is 5 . So no such $A$ and $B$ exist.
2. (Ohio MAA $2006 \# 2$ ) Denote the given integers by $a_{1}, a_{2}, a_{3} \ldots a_{n}$. Define:

$$
\begin{aligned}
S_{1} & =a_{1} \\
S_{2} & =a_{1}+a_{2} \\
& \vdots \\
S_{n} & =a_{1}+a_{2}+\cdots+a_{n}
\end{aligned}
$$

If one of the numbers $S_{1}, S_{2}, \ldots S_{n}$ is a multiple of $n$ we are done. Otherwise all possible remainders upon division of these numbers by $n$ are $1,2,3, \ldots n-1$, i.e., we get more numbers than possible remainders. Therefore, among the numbers $S_{1}, S_{2}, \ldots S_{n}$ there are two numbers, say $S_{k}$ and $S_{k+t}$ which give the same remainders upon division by $n$. We are done because $S_{k+t}-S_{k}=a_{k+1}+a_{k+2}+\cdots+a_{k+t}$ is a multiple of $n$.

## Newton Level

3. (Ohio MAA 2006 \#5) By using the (known) limit

$$
\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x^{2}}=\frac{1}{2}
$$

we can write

$$
\lim _{x \rightarrow 0} \frac{1-\cos (1-\cos x)}{x^{2}}=\lim _{x \rightarrow 0} \frac{1-\cos (1-\cos x)}{(1-\cos x)^{2}}\left(\frac{1-\cos x}{x^{2}}\right)^{2}=\frac{1}{2} \cdot \frac{1}{4}=\frac{1}{8}
$$

So we can take $n=2$ and $a=\frac{1}{8}$.
4. (Putnam 2008 B2) We claim that

$$
F_{n}(x)=\left(\ln x-a_{n}\right) x^{n} / n!, \text { where } a_{n}=\sum_{k=1}^{n} 1 / k
$$

Indeed, temporarily write $G_{n}(x)=\left(\ln x-a_{n}\right) x^{n} / n$ ! for $x>0$ and $n \geq 1$. Then

$$
\lim _{x \rightarrow 0} G_{n}(x)=0
$$

and

$$
G_{n}^{\prime}(x)=\left(\ln x-a_{n}+1 / n\right) x^{n-1} /(n-1)!=G_{n-1}(x)
$$

and the claim follows by the Fundamental Theorem of Calculus and induction on $n$.
Given the claim, we have $F_{n}(1)=-a_{n} / n$ ! and so we need to evaluate

$$
-\lim _{n \rightarrow \infty} \frac{a_{n}}{\ln n}
$$

But since the function $1 / x$ is strictly decreasing for $x$ positive,

$$
\sum_{k=2}^{n} 1 / k=a_{n}-1
$$

is bounded below by

$$
\int_{2}^{n} d x / x=\ln n-\ln 2
$$

and above by

$$
\int_{1}^{n} d x / x=\ln n
$$

It follows that

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{\ln n}=1
$$

and the desired limit is -1 .

## Wiles Level

5. (Ohio MAA $2006 \# 1$ ) Evaluating at $(0,0)$ gives

$$
f(0+0)=f(0) f(1)+f(0) f(1)
$$

so that $f(1)=1 / 2$ also. Then

$$
f(x)=f(x+0)=f(x) f(1)+f(0) f(1-x)
$$

and we find $f(x)=f(1-x)$. Substituting into the original equation shows: $f(x+y)=2 f(x) f(y)$. Then

$$
f(x+1)=2 f(x) f(1)=f(x)
$$

and we also get

$$
f(-x)=f(1-(-x))=f(1+x)=f(x)
$$

Therefore

$$
f(x-y)=2 f(x) f(-y)=2 f(x) f(y)=f(x+y)
$$

Consequently,

$$
f(x)=f\left(\frac{x}{2}+\frac{x}{2}\right)=f\left(\frac{x}{2}-\frac{x}{2}\right)=f(0)=1 / 2
$$

6. (Ohio MAA $2006 \# 3$ ) If $g \in G$, then $g A \cap A \neq \emptyset$ since $A$ has more than half as many elements as $G$. Therefore, there exist $a_{1}$ and $a_{2}$ such that $g a_{1}=a_{2}$ and hence $g=a_{2} a_{1}^{-1}$.
