Math 280 Problems for October 16

Pythagoras Level

1. Show that for every sequence $x_{1}, \ldots, x_{n} \in(0,1)$ at least one of the inequalities holds:

$$
x_{1} \cdots x_{n} \leq 2^{-n}
$$

or

$$
\left(1-x_{1}\right) \cdots\left(1-x_{n}\right) \leq 2^{-n}
$$

2. How many squares (of all possible sizes) are there in the following picture?

Newton Level

3. Compute

$$
L=\lim _{n \rightarrow \infty} \prod_{i=2}^{n}\left(1-\frac{1}{i^{2}}\right)
$$

4. Let f be a continuous function on $[0,1]$, such that for every $x \in[0,1], \int_{x}^{1} f(t) d t \geq \frac{1-x^{2}}{2}$. Show that

$$
\int_{0}^{1}(f(x))^{2} d x \geq \frac{1}{3}
$$

Wiles Level

5. Compute

$$
L=\lim _{n \rightarrow \infty} \frac{1}{n^{4}} \prod_{i=1}^{2 n}\left(n^{2}+i^{2}\right)^{1 / n}
$$

6. Five points in the plane belong to a closed square with side 1. Prove that the distance between some two of them is at most $\sqrt{2} / 2$.
