Math 280 Problems for October 23

Pythagoras Level

1. Let $a_{1}=3$ and for $n \geq 1, a_{n+1}=a_{n}^{2}-2$. Prove that if $m \neq n$ then a_{m} and a_{n} are relatively prime.
(NCS-MAA $1998 \# 4$) Note first that all an are odd (by an easy induction). Assume that $m<n$. Then

$$
\begin{aligned}
& a_{m+1}=a_{m}^{2}-2 \equiv-2 \quad \bmod a_{m} \\
& a_{m+2} \equiv(-2)^{2}-2 \equiv 2 \quad \bmod a_{m}
\end{aligned}
$$

And by induction, for every $k \geq 2, a_{m+k} \equiv 2 \bmod a_{m}$. Thus $a_{n}=q a_{m}+2$ or $a_{n}=q a_{m}-2$ for some integer q, and therefore every common factor of a_{m} and a_{n} is a divisor of 2 . Since both a_{m} and a_{n} are odd, they are relatively prime.
2. Let $f_{1}(x)=f(x)=\frac{1}{1-x}$, and for $n>1, f_{n}(x)=f\left(f_{n-1}(x)\right)$. Evaluate $f_{2011}(2010)$.
(NCS-MAA 1999 \#2) We have

$$
f_{2}(x)=\frac{1}{1-\frac{1}{1-x}}=\frac{x-1}{x}
$$

and

$$
f_{3}(x)=\frac{1}{1-\frac{x-1}{x}}=x
$$

Then $f_{4}(x)=f_{1}(x)$, and for each $n, f_{n}(x)=f_{n+3}(x)$. Since $2011 \equiv 1 \bmod 3, f_{2011}(x)=f_{2}(x)$. So $f_{2011}(2010)=\frac{2009}{2010}$.

Note: Composition of functions that are the quotient of two linear functions is equivalent to 2×2 matrix multiplication. In this case, the fact that $f_{3}(x)=x$ is related to

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right)^{3}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Newton Level

3. Find the maximum and minimum values of

$$
2 x|x|-5 x+1
$$

for $|x+1| \leq 3$. Justify your answer.
(NCS-MAA $1997 \# 4$) The maximum value is $33 / 8=4.125$, at $x=-5 / 4$, and the minimum value is -11 , at $x=-4$. To see this, let

$$
f(x)=2 x|x|-5 x+1=\left\{\begin{aligned}
2 x^{2}-5 x+1, & x \geq 0 \\
-2 x^{2}-5 x+1, & x<0
\end{aligned}\right.
$$

Then

$$
f^{\prime}(x)=\left\{\begin{aligned}
4 x-5, & x \geq 0 \\
-4 x-5, & x<0
\end{aligned}\right.
$$

The range $|x+1| \leq 3$ is equivalent to $-3 \leq x+1 \leq 3$; i.e., $-4 \leq x \leq 2$. Candidates for local extrema are at $x=-4,-5 / 4,5 / 4$ and 2 , where $f(x)$ has values $-11,33 / 8=4.125,-17 / 8=-2.125$ and -1 , respectively. Thus the maximum value is $33 / 8$, at $x=-5 / 4$, and the minimum is -11 , at $x=-4$.
4. Evaluate

$$
\int_{1}^{2} \frac{1}{\left\lfloor x^{2}\right\rfloor} d x
$$

where as usual $\lfloor u\rfloor$ denotes the greatest integer less than or equal to u.
(NCS-MAA 1999 \#4) From the definition of the floor function,

$$
\frac{1}{\left\lfloor x^{2}\right\rfloor}= \begin{cases}\frac{1}{1} & 1 \leq x \leq \sqrt{2} \\ \frac{1}{2} & \sqrt{2} \leq x \leq \sqrt{3} \\ \frac{1}{3} & \sqrt{3} \leq x \leq 2\end{cases}
$$

Then

$$
\int_{1}^{2} \frac{1}{\left\lfloor x^{2}\right\rfloor} d x=1(\sqrt{2}-1)+\frac{1}{2}(\sqrt{3}-\sqrt{2})+\frac{1}{3}(2-\sqrt{3})=-\frac{1}{3}+\frac{1}{2} \sqrt{2}+\frac{1}{6} \sqrt{3}
$$

Wiles Level

5. If

$$
x=\frac{1+\sqrt{2010}}{2}
$$

what is the value of

$$
\left(4 x^{3}-2013 x-2010\right)^{2015} ?
$$

Justify your answer.
(NCS-MAA $1997 \# 5)$ We know $4 x^{2}-4 x+1=(2 x-1)^{2}=2010$, so $4 x^{2}=4 x+2009$ and $4 x^{3}=4 x^{2}+2009 x$. Then

$$
\begin{aligned}
4 x^{3}-2013 x-2010 & =4 x^{2}+2009 x-2013 x-2010 \\
& =4 x^{2}-4 x-2010 \\
& =4 x^{2}-4 x+1-2011 \\
& =2010-2011 \\
& =-1
\end{aligned}
$$

Thus $\left(4 x^{3}-2013 x-2010\right)^{2015}=(-1)^{2015}=-1$.
6. Given that a, b and c are real numbers with $a<b$ and $a<c$, prove that

$$
a<\frac{b c-a^{2}}{b+c-2 a}<\min \{b, c\}
$$

(NCS-MAA $1999 \# 6$) Since $a<c$ and $b-a>0$ then

$$
\begin{aligned}
a(b-a) & <c(b-a) \\
a b-a^{2} & <c b-c a \\
a b+a c-a^{2} & <b c \\
a b+a c-2 a^{2} & <b c-a^{2} \\
a & <\frac{b c-a^{2}}{b+c-2 a}
\end{aligned}
$$

So the first inequality is true.
Note that because of the symmetry in b and c in the problem, we may assume without loss of generality that $b \leq c$. Then since $a \neq b$

$$
\begin{aligned}
0 & <\left(a^{2}-2 a b+b^{2}\right)=(a-b)^{2} \\
-a^{2} & <-2 a b+b^{2} \\
b c-a^{2} & <b c-2 a b+b^{2} \\
\frac{b c-a^{2}}{b+c-2 a} & <b=\min \{b, c\}
\end{aligned}
$$

So the second inequality is true.

