Math 280 Problems for October 30

Pythagoras Level

1. Two zombies randomly pop out of the ground along a straight line of length 2 meters. What is the probability they will be within $1 / 3$ meter apart?
2. You've been killing zombies all day and your genius side-kick just solved a differential equation and found that soon the amount of zombies left will be:

$$
z=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}
$$

However, she and her work are eaten by a zombie before she could simplify. Show that $z=1$. (Note: All your computers and calculators were destroyed by zombies.)

Newton Level

3. A zombie is standing in a coordinate plane at $(1,0)$. Your zombie death ray works best at a distance 1 from a zombie. You decide to run along a path given by $y=x^{p}$ from the point $(0,0)$ to $(1,1)$. For what positive real numbers p is the maximal distance from the zombie to your path equal to 1 ?
4. For p and q real number with $p>q$, compute

$$
\int_{0}^{1}\left(1-x^{1 / p}\right)^{q} d x-\int_{0}^{1}\left(1-x^{1 / q}\right)^{p} d x
$$

Hint: Zombies!

Wiles Level

5. For real numbers u, let $\{u\}=u-\lfloor u\rfloor$ denote the fractional part of u. Here $\lfloor u\rfloor$ denotes, as usual, the greatest integer less than or equal to u. For example, $\{\pi\}=\pi-3$, and $\{-2.4\}=-2.4-(-3)=0.6$. Find all real x such that

$$
\left\{(x+1)^{3}\right\}=x^{3}
$$

6. Let G be the set of all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$, satisfying the following properties.

- $f(x)=f(x+1)$ for all x,
- $\int_{0}^{1} f(x) d x=2010$.

Show that there is a number α such that $\alpha=\int_{0}^{1} \int_{0}^{x} f(x+y) d y d x$ for all $f \in G$.

