Math 280 Solutions for October 30

Pythagoras Level

1. (ICMC $2009 \# 1$) The area between the lines $P=Q+1 / 3$ and $P=Q-1 / 3$ that is contained in the square $[0,2] \times[0,2]$ is equal to $4-(5 / 3)^{2}=11 / 9$. Divide this number by 4 to get the required probability: $11 / 36$.
2. (ICMC $2009 \# 4) z \in \mathbb{R}$ and satisfies the equation $x^{3}+3 x-4=0$. Since $x^{3}+3 x-4=(x-1)\left(x^{2}+x+4\right)$ and the discriminant of $x^{2}+x+4$ is -15 , the only real solution of $x^{3}+3 x-4=0$ is 1 . So, $z=1$.

Newton Level

3. (Iowa MAA $2006 \# 3$) We look at the square of the distance from $\left(x, x^{p}\right)$ to $(1,0): f(x)=(1-x)^{2}+x^{2 p}$. The derivative of f is $f^{\prime}(x)=2\left(p x^{2 p-1}+x-1\right)$. If $p<1 / 2$, then $2 p-1<0$ and $f^{\prime}(x)>0$ for sufficiently small positive values of x. Therefore, f increases for sufficiently small positive values of x and has a maximum greater than $f(0)=1$. On the other hand, for $p \geq 1 / 2, f(x) \leq(1-x)+x=1$.
4. (Illinois MAA $2006 \# 6$) The difference is zero! The curve $y=\left(1-x^{1 / p}\right)^{q}$ passes through the points $(0,1)$ and $(1,0)$. Also, the first integral is the area in the first quadrant between this curve and the coordinate axes. Solving for x gives $x=\left(1-y^{1 / q}\right)^{p}$. Hence, the area between this curve and the coordinate axes (using a " y " integration) is $\int_{0}^{1}\left(1-y^{1 / q}\right)^{p} d y$ Since the area is the same, in either case, the difference gives 0 .

Wiles Level

5. (Iowa MAA $2005 \# 7$) A necessary condition is that $0 \leq x^{3}<1$, and therefore $0 \leq x<1$, because $0 \leq\{u\}<1$ for all real u. So we restrict attention to x with $0 \leq x<1$. Then

$$
\left\{(x+1)^{3}\right\}=\left\{x^{3}+3 x^{2}+3 x+1\right\}=x^{3} \Leftrightarrow 3 x^{2}+3 x=n
$$

where n is an integer and $0 \leq x<1$. The nonnegative root of this quadratic is

$$
x=\frac{-3+\sqrt{9+12 n}}{6},
$$

and this is real and lies in the interval $[0,1)$ if and only if $0 \leq n \leq 5$.
6. (VTRMC, $1999 \# 1$) Since the value of $f(x, y)$ is unchanged when we swap x with y,

$$
\int_{0}^{1} \int_{0}^{x} f(x+y) d y d x=\frac{1}{2} \int_{0}^{1} \int_{0}^{1} f(x+y) d y d x
$$

Also

$$
\int_{0}^{1} f(x+y) d y=\int_{x}^{1+x} f(z) d z=\int_{0}^{1} f(z) d z
$$

because $f(z)=f(1+z)$ for all z. Since $\int_{0}^{1} f(z) d x=2010$, we conclude that

$$
\int_{0}^{1} \int_{0}^{1} f(x+y) d y d x=2010 / 2=1005
$$

