MATH 210: Prove it!

NAME:

Def 1. A number r is rational if and only if there exists **A** integers a and b such that $r = \frac{a}{b}$.

Def 2. 0! = 1 and for all integers $n \ge 1$,

$$n! = n(n-1)(n-2)\cdots 2\cdot 1.$$

Def 3. The real number *e* is given by

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}.$$

xiom 1. There is no integer
$$n$$
 such that $0 < n < 1$.

Axiom 2. The addition or multiplication of two or more integers results in an integer.

Axiom 3. If
$$0 < n < m$$
, then $\frac{1}{m} < \frac{1}{n}$.

Axiom 4.
$$\sum_{i=0}^{\infty} a_i - \sum_{i=0}^{k} a_i = \sum_{i=k+1}^{\infty} a_i.$$

Axiom 5. If $a_i > 0$ for all i , then $\sum_{i=k}^{\infty} a_i > 0$ for all k .

Using some or all of the above definitions and axioms (as well as simple rules of algebra and fractions), prove the following theorem:

Theorem 1. If $r = \frac{a}{b}$ where a and $b \in \mathbb{Z}$, then

$$b!\left(r-\sum_{n=0}^{b}\frac{1}{n!}\right)\in\mathbb{Z}.$$

Theorem 2. For any integer b > 0,

$$b!\left(e - \sum_{n=0}^{b} \frac{1}{n!}\right) > 0$$

Theorem 3. For integers $0 < b \le n$,

$$\frac{b!}{n!} \leq \frac{1}{(b+1)^{n-b}}.$$

Theorem 4. For $b \ge 1$,

$$\sum_{k=b+1}^{\infty} \frac{1}{(b+1)^{k-b}} = \frac{1}{b}.$$

(Hint: Let $S = \sum_{k=b+1}^{\infty} \frac{1}{(b+1)^{k-b}}$ and evaluate (b+1)S - S.)

Theorem 1. If $r = \frac{a}{b}$ where a and $b \in \mathbb{Z}$, then

$$b!\left(r-\sum_{n=0}^{b}\frac{1}{n!}\right)\in\mathbb{Z}.$$

Theorem 2. For any integer b > 0,

$$b!\left(e-\sum_{n=0}^{b}\frac{1}{n!}\right)>0$$

Theorem 3. For integers $0 < b \le n$,

$$\frac{b!}{n!} \le \frac{1}{(b+1)^{n-b}}.$$

Theorem 4. For
$$b \ge 1$$
,

$$\sum_{k=b+1}^{\infty} \frac{1}{(b+1)^{k-b}} = \frac{1}{b}$$

(Hint: Let $S = \sum_{k=b+1}^{\infty} \frac{1}{(b+1)^{k-b}}$ and evaluate (b+1)S - S.)

Using the theorems that your group members and you just proved, prove the following theorem.

Theorem 5. The real number *e* is irrational.