NAME:

Def 1. A number r is rational if and only if there exists integers a and b such that $r=\frac{a}{b}$.

Def 2. $0!=1$ and for all integers $n \geq 1$,

$$
n!=n(n-1)(n-2) \cdots 2 \cdot 1
$$

Def 3. The real number e is given by

$$
e=\sum_{n=0}^{\infty} \frac{1}{n!} .
$$

Axiom 1. There is no integer n such that $0<n<1$.
Axiom 2. The addition or multiplication of two or more integers results in an integer.

Axiom 3. If $0<n<m$, then $\frac{1}{m}<\frac{1}{n}$.
Axiom 4. $\sum_{i=0}^{\infty} a_{i}-\sum_{i=0}^{k} a_{i}=\sum_{i=k+1}^{\infty} a_{i}$.
Axiom 5. If $a_{i}>0$ for all i, then $\sum_{i=k}^{\infty} a_{i}>0$ for all k.

Using some or all of the above definitions and axioms (as well as simple rules of algebra and fractions), prove the following theorem:

Theorem 1. If $r=\frac{a}{b}$ where a and $b \in \mathbb{Z}$, then

$$
b!\left(r-\sum_{n=0}^{b} \frac{1}{n!}\right) \in \mathbb{Z}
$$

Theorem 2. For any integer $b>0$,

$$
b!\left(e-\sum_{n=0}^{b} \frac{1}{n!}\right)>0
$$

Theorem 3. For integers $0<b \leq n$,

$$
\frac{b!}{n!} \leq \frac{1}{(b+1)^{n-b}}
$$

Theorem 4. For $b \geq 1$,

$$
\sum_{k=b+1}^{\infty} \frac{1}{(b+1)^{k-b}}=\frac{1}{b}
$$

(Hint: Let $S=\sum_{k=b+1}^{\infty} \frac{1}{(b+1)^{k-b}}$ and evaluate $(b+1) S-S$.)

Theorem 1. If $r=\frac{a}{b}$ where a and $b \in \mathbb{Z}$, then

$$
b!\left(r-\sum_{n=0}^{b} \frac{1}{n!}\right) \in \mathbb{Z}
$$

Theorem 2. For any integer $b>0$,

$$
b!\left(e-\sum_{n=0}^{b} \frac{1}{n!}\right)>0
$$

Theorem 3. For integers $0<b \leq n$,

$$
\frac{b!}{n!} \leq \frac{1}{(b+1)^{n-b}}
$$

Theorem 4. For $b \geq 1$,

$$
\sum_{k=b+1}^{\infty} \frac{1}{(b+1)^{k-b}}=\frac{1}{b}
$$

(Hint: Let $S=\sum_{k=b+1}^{\infty} \frac{1}{(b+1)^{k-b}}$ and evaluate $(b+1) S-S$.)

Using the theorems that your group members and you just proved, prove the following theorem.
Theorem 5. The real number e is irrational.

