1. Quadrilateral area.

In the figure at the right $A B=20, A C=12, A D=$ $D B$, angles $A C B$ and $A D E$ are right angles. Find the area of the quadrilateral $A D E C$.

2. Sequence sum.

A sequence begins with a_{1}, a_{2}, and for $n>2$ is defined by $a_{n}=a_{n-1}-a_{n-2}$. Find the sum of the first 2004 terms (in terms of a_{1} and a_{2}), and defend your answer.

3. Sum of cubes of roots.

If r and s are the roots of the quadratic equation

$$
x^{2}+a x+\frac{a^{2}-1}{2}=0
$$

find $r^{3}+s^{3}$ in terms of a, and express it as a polynomial in a with rational coefficients.

4. Integer linear combination.

Do there exist integers m and n satisfying

$$
130 m+559 n=52 ?
$$

If so, find such a pair (m, n). If not, explain.

5. A polynomial in x^{3}.

Let $P(x)=x^{3}-x^{2}+x-2$. Does there exist a nontrivial polynomial $Q(x)$ with real coefficients such that the degree of every term of the product $P(x) Q(x)$ is a multiple of 3 ? If so, find one. If not, show there is none.

6. Shuffling cards.

A card shuffling machine always rearranges cards in the same way relative to the order in which they are given to it. The thirteen spades arranged in the order

$$
A, 2,3,4,5,6,7,8,9,10, J, Q, K
$$

are put into the machine, shuffled, and then the shuffled cards are put into the machine and shuffled again. If at this point the order of the cards is

$$
3, K, 10,2, Q, 9,4, J, 8,6,7, A, 5
$$

what was the order of the cards after the first shuffle?

7. Slanted asymptote.

Let $f(x)=2 x+\sqrt{x^{2}+4 x+5}$ for all real x. Show that as $x \rightarrow-\infty$ the graph of f is asymptotic to a nonhorizontal straight line, and find the equation of this line. (You must show rigorously that the distance between this line and the graph of f approaches zero.)

8. Find the n-th term.

The sequence $\left\{a_{n}\right\}$ is defined recursively by $a_{0}=2, a_{1}=671$, and for $n \geq 0, a_{n+2}=$ $671 a_{n+1}-2004 a_{n}$. Find, and prove, a closed form expression for a_{n}.

9. Same fractional parts.

Let n be an integer, $n \geq 3$, and let x be a real number such that the numbers x, x^{2} and x^{n} have the same fractional parts. Prove that x is an integer. (The fractional part of a number u is $u-\lfloor u\rfloor$; i.e., u minus the greatest integer in u.)

10. Limit of product of cosines.

The sequence of functions $\left\{u_{n}(x)\right\}$ is defined for real x by $u_{1}(x)=\cos (x / 2)$ and for $n>1$, $u_{n}(x)=u_{n-1}(x) \cos \left(x / 2^{n}\right)$. Thus

$$
u_{n}(x)=\cos \frac{x}{2} \cos \frac{x}{2^{2}} \cdots \cos \frac{x}{2^{n}}
$$

If $x=0$, it is clear that $u_{n}(x)=1$ for every n. Find $\lim _{n \rightarrow \infty} u_{n}(x)$ as a function of x for $x \neq 0$.

