Math 280 Problems for September 24

Pythagoras Level

\#1. Find a positive integer the first digit of which is 1 , which has the property that if this digit is moved to the end of the number, the number is tripled.
\#2. Let $n \geq 1$ and define $A=\{1,2, \ldots, n\}$. Denote the power set of A (i.e. the set of all subsets of A) by $P(A)$. For each subset $K \subseteq A$, define the following function:
$a(K)=$ the alternating sum of the members of K, starting with the largest element and continuing in decreasing order. For example, $a(\{1,4,6,7,9\})=9-7+6-4+1$ Find the following sum (justify your answer)

$$
\sum_{K \in P(A)} a(K)
$$

Newton Level

$\# 3$. The graph of a non-negative, differentiable function f divides the triangle with vertices $(0,0),(x, 0)$, and $(x, f(x))$ into two parts having equal areas for each positive value of x. Find an explicit expression for $f(x)$ if $f(2010)=2010$.
\#4. Find all differentiable functions $f:(0, \infty) \rightarrow(0, \infty)$ for which there is a positive real number a such that

$$
f^{\prime}\left(\frac{a}{x}\right)=\frac{x}{f(x)}
$$

for all $x>0$.

Wiles Level

\#5. Consider the numbers

$$
a_{2}=11, a_{3}=111, a_{4}=1111, a_{5}=11111, \ldots
$$

Show that if n is composite, then so is a_{n}.
$\# 6$. Suppose that $a, b \in \mathbb{R}$ with $a<b$. Suppose that $f:(a, b) \rightarrow \mathbb{R}$. Suppose that f is increasing and satisfies the property that for all $\lambda \in(0,1)$ and $x, y \in(a, b)$

$$
f(\lambda x+(1-\lambda) y) \lambda f(x)+(1-\lambda) f(y)
$$

Prove that f is continuous on (a, b).

