Math 280 Solutions for September 24

Pythagoras Level

#1. Find a positive integer the first digit of which is 1, which has the property that if this digit is moved to the end of the number, the number is tripled.

[2005 Ohio MAA CONSTUM #1] Suppose the integer is

\[n = 1 \cdot 10^m + d_{m-1} \cdot 10^{m-1} + \cdots + d_1 10 + d_0 \]

Then

\[d_{m-1} \cdot 10^m + \cdots + d_1 \cdot 10^2 + d_0 \cdot 10 + 1 = 3(1 \cdot 10^m + d_{m-1} \cdot 10^{m-1} + \cdots + d_1 10 + d_0) \]

Hence

\[d_{m-1}(10^m - 3 \cdot 10^{m-1}) + \cdots + d_1(10^2 - 3 \cdot 10) + d_0(10 - 3) = 3 \cdot 10^{m-1} \]

or

\[7d_{m-1} \cdot 10^{m-1} + \cdots + 7d_1 \cdot 10 + 7d_0 = 3 \cdot 10^{m-1} \]

Thus

\[n - 10^m = \frac{3 \cdot 10^{m-1}}{7} \]

which implies

\[n = \frac{10^m + 1}{7} = \frac{99999 \ldots}{7} \]

The fewest number of 9s you need for \(n \) to be an integer is 6, and in this case we have \(n = 142857 \).

#2. Let \(n \geq 1 \) and define \(A = \{1, 2, \ldots, n\} \). Denote the power set of \(A \) (i.e. the set of all subsets of \(A \)) by \(P(A) \). For each subset \(K \subseteq A \), define the following function:

\[a(K) = \text{the alternating sum of the members of } K, \text{ starting with the largest element and continuing in decreasing order.} \]

For example, \(a(\{1, 4, 6, 7, 9\}) = 9 - 7 + 6 - 4 + 1 \) Find the following sum (justify your answer)

\[\sum_{K \in P(A)} a(K) \]

[2005 Ohio MAA CONSTUM #10] Let \(P(A) = B \cup C \) where \(B \) = the subsets containing \(n \) and \(C \) = the subsets not containing \(n \). Then \(|B| = |C| = 2^{n-1} \) and there is a bijection between the elements of \(B \) and \(C \) via

\[\{a_1, a_2, \ldots, a_j\} \leftrightarrow \{a_1, a_2, \ldots, a_j, n\} \]

The combined alternating sum of the two sets above is \(n \) and thus

\[\sum_{K \in P(A)} a(K) = n2^{n-1}. \]

#3. The graph of a non-negative, differentiable function \(f \) divides the triangle with vertices \((0, 0), (x, 0), \) and \((x, f(x))\) into two parts having equal areas for each positive value of \(x \). Find an explicit expression for \(f(x) \) if \(f(2010) = 2010 \).

[ISMAA 1998 #6] The area under \(y = f(x) \) is half of the area of the triangle. Therefore,

\[\int_0^x f(x) \, dx = \frac{1}{2} \left(\frac{1}{2} xf(x) \right). \]

Differentiating this expression by using the Fundamental Theorem of Calculus yields,

\[f(x) = \frac{1}{4}(f(x) + xf'(x)). \]

This gives the differential equation \(y = \frac{1}{4}(y + y') \) or \(3y = xy' \). This equation can be solved by separation of variables to give \(y = cx^3 \), for some constant \(c \). Finally, using the initial condition gives \(f(x) = x^3/(2010)^2 \).
#4. Find all differentiable functions $f : (0, \infty) \to (0, \infty)$ for which there is a positive real number a such that

$$f'(\frac{a}{x}) = \frac{x}{f(x)}$$

for all $x > 0$.

[Putnam 2005 B3] The functions are precisely $f(x) = cx^d$ for $c, d > 0$ arbitrary except that we must take $c = 1$ in case $d = 1$. To see this, substitute a/x for x in the given equation:

$$f'(x) = \frac{a}{xf(a/x)}.$$

Differentiate:

$$f''(x) = -\frac{a}{x^2f(a/x)} + \frac{a^2f'(a/x)}{x^3f(a/x)^2}.$$

Now substitute to eliminate evaluations at a/x:

$$f''(x) = -\frac{f'(x)}{x} + \frac{f'(x)^2}{f(x)}.$$

Clear denominators:

$$xf(x)f''(x) + f(x)f'(x) = xf'(x)^2.$$

Divide through by $f(x)^2$ and rearrange:

$$0 = \frac{f'(x)}{f(x)} + \frac{xf''(x)}{f(x)} - \frac{xf'(x)^2}{f(x)^2}.$$

The right side is the derivative of $xf'(x)/f(x)$, so that quantity is constant. That is, for some d,

$$\frac{f'(x)}{f(x)} = \frac{d}{x}.$$

Integrating yields $f(x) = cx^d$, as desired.

#5. Consider the numbers $a_2 = 11$, $a_3 = 111$, $a_4 = 1111$, $a_5 = 11111$, ... Show that if n is composite, then so is a_n.

[2005 Ohio MAA CONSTUM #6] Suppose k is composite. Let $k = mn$ be a nontrival factorization. Then

$$a_k = a_m \times \sum_{i=0}^{n-1} 10^{mi},$$

so a_k is composite.

#6. Suppose that $a, b \in \mathbb{R}$ with $a < b$. Suppose that $f : (a, b) \to \mathbb{R}$. Suppose that f is increasing and satisfies the property that for all $\lambda \in (0, 1)$ and $x, y \in (a, b)$

$$f(\lambda x + (1 - \lambda)y) \lambda f(x) + (1 - \lambda)f(y)$$

Prove that f is continuous on (a, b).

[ICMC 2009 #6] The condition to which f is subject implies that for $r < s < t$,

$$\frac{f(s) - f(r)}{s - r} \leq \frac{f(t) - f(r)}{t - r} \leq \frac{f(t) - f(s)}{t - s}.$$

Now let $\epsilon > 0$. Let $x_0 \in (s, t) \subset (a, b)$. Choose $w \in \mathbb{N}$ large enough so that $(x_0 - \epsilon/w, x_0 + \epsilon/w) \subset (s, t)$. Let $m = \frac{f(t) - f(x_0)}{t - x_0}$. Let k be equal to the larger of w or m. Finally, let $\delta = \epsilon/k$. If $|x - x_0| < \delta$, the inequality above implies that $|f(x) - f(x_0)| < \epsilon$.