Math 280 Solutions for September 24

Pythagoras Level

\#1. Find a positive integer the first digit of which is 1 , which has the property that if this digit is moved to the end of the number, the number is tripled.
[2005 Ohio MAA CONSTUM \#1] Suppose the integer is

$$
n=1 \cdot 10^{m}+d_{m-1} \cdot 10^{m-1}+\cdots+d_{1} 10+d_{0}
$$

Then

$$
d_{m-1} \cdot 10^{m}+\cdots+d_{1} \cdot 10^{2}+d_{0} \cdot 10+1=3\left(1 \cdot 10^{m}+d_{m-1} \cdot 10^{m-1}+\cdots+d_{1} 10+d_{0}\right)
$$

Hence

$$
d_{m-1}\left(10^{m}-3 \cdot 10^{m-1}\right)+\cdots+d_{1}\left(10^{2}-3 \cdot 10\right)+d_{0}(10-3)=3 \cdot 10^{m-1}
$$

or

$$
\begin{array}{r}
7 d_{m-1} \cdot 10^{m-1}+\cdots+7 d_{1} \cdot 10+7 d_{0}=3 \cdot 10^{m-1} \\
d_{m-1} \cdot 10^{m-1}+\cdots+d_{1} \cdot 10+d_{0}=\frac{3 \cdot 10^{m-1}}{7}
\end{array}
$$

Thus

$$
n-10^{m}=\frac{3 \cdot 10^{m-1}}{7}
$$

which implies

$$
n=\frac{10^{m+1}-1}{7}=\frac{99999 \ldots}{7}
$$

The fewest number of 9 s you need for n to be an integer is 6 , and in this case we have $n=142857$.
$\# 2$. Let $n \geq 1$ and define $A=\{1,2, \ldots, n\}$. Denote the power set of A (i.e. the set of all subsets of A) by $P(A)$. For each subset $K \subseteq A$, define the following function:
$a(K)=$ the alternating sum of the members of K, starting with the largest element and continuing in decreasing order. For example, $a(\{1,4,6,7,9\})=9-7+6-4+1$ Find the following sum (justify your answer)

$$
\sum_{K \in P(A)} a(K)
$$

[2005 Ohio MAA CONSTUM \#10] Let $P(A)=B \cup C$ where $B=$ the subsets containing n and $C=$ the subsets not containing n. Then $|B|=|C|=2^{n 1}$ and there is a bijection between the elements of B and C via

$$
\left\{a_{1}, a_{2}, \ldots, a_{j}\right\} \leftrightarrow\left\{a_{1}, a_{2}, \ldots, a_{j}, n\right\}
$$

The combined alternating sum of the two sets above is n and thus

$$
\sum_{K \in P(A)} a(K)=n 2^{n-1}
$$

$\# 3$. The graph of a non-negative, differentiable function f divides the triangle with vertices $(0,0),(x, 0)$, and $(x, f(x))$ into two parts having equal areas for each positive value of x. Find an explicit expression for $f(x)$ if $f(2010)=2010$.
[ISMAA $1998 \# 6]$ The area under $y=f(x)$ is half of the area of the triangle. Therefore,

$$
\int_{0}^{x} f(x) d x=\frac{1}{2}\left(\frac{1}{2} x f(x)\right) .
$$

Differentiating this expression by using the Fundamental Theorem of Calculus yields,

$$
f(x)=\frac{1}{4}\left(f(x)+x f^{\prime}(x)\right) .
$$

This gives the differential equation $y=\frac{1}{4}\left(y+x y^{\prime}\right)$ or $3 y=x y^{\prime}$. This equation can be solved by separation of varialbles to give $y=c x^{3}$, for some constant c. Finally, using the initial condition gives $f(x)=x^{3} /(2010)^{2}$.
\#4. Find all differentiable functions $f:(0, \infty) \rightarrow(0, \infty)$ for which there is a positive real number a such that

$$
f^{\prime}\left(\frac{a}{x}\right)=\frac{x}{f(x)}
$$

for all $x>0$.
[Putnam 2005 B 3] The functions are precisely $f(x)=c x^{d}$ for $c, d>0$ arbitrary except that we must take $c=1$ in case $d=1$. To see this, substitute a / x for x in the given equation:

$$
f^{\prime}(x)=\frac{a}{x f(a / x)}
$$

Differentiate:

$$
f^{\prime \prime}(x)=-\frac{a}{x^{2} f(a / x)}+\frac{a^{2} f^{\prime}(a / x)}{x^{3} f(a / x)^{2}} .
$$

Now substitute to eliminate evaluations at a / x :

$$
f^{\prime \prime}(x)=-\frac{f^{\prime}(x)}{x}+\frac{f^{\prime}(x)^{2}}{f(x)}
$$

Clear denominators:

$$
x f(x) f^{\prime \prime}(x)+f(x) f^{\prime}(x)=x f^{\prime}(x)^{2} .
$$

Divide through by $f(x)^{2}$ and rearrange:

$$
0=\frac{f^{\prime}(x)}{f(x)}+\frac{x f^{\prime \prime}(x)}{f(x)}-\frac{x f^{\prime}(x)^{2}}{f(x)^{2}}
$$

The right side is the derivative of $x f^{\prime}(x) / f(x)$, so that quantity is constant. That is, for some d,

$$
\frac{f^{\prime}(x)}{f(x)}=\frac{d}{x}
$$

Integrating yields $f(x)=c x^{d}$, as desired.
$\# 5$. Consider the numbers

$$
a_{2}=11, a_{3}=111, a_{4}=1111, a_{5}=11111, \ldots
$$

Show that if n is composite, then so is a_{n}.
[2005 Ohio MAA CONSTUM \#6] Suppose k is composite. Let $k=m n$ be a nontrival factorization. Then

$$
a_{k}=a_{m} \times \sum_{i=0}^{n-1} 10^{m i}
$$

so a_{k} is composite.
$\# 6$. Suppose that $a, b \in \mathbb{R}$ with $a<b$. Suppose that $f:(a, b) \rightarrow \mathbb{R}$. Suppose that f is increasing and satisfies the property that for all $\lambda \in(0,1)$ and $x, y \in(a, b)$

$$
f(\lambda x+(1-\lambda) y) \lambda f(x)+(1-\lambda) f(y)
$$

Prove that f is continuous on (a, b).
[ICMC $2009 \# 6]$ The condition to which f is subject implies that for $r<s<t$,

$$
\frac{f(s)-f(r)}{s-r} \leq \frac{f(t)-f(r)}{t-r} \leq \frac{f(t)-f(s)}{t-s}
$$

Now let $\epsilon>0$. Let $x_{0} \in(s, t) \subset(a, b)$. Choose $w \in \mathbb{N}$ large enough so that $\left(x_{0}-\epsilon / w, x_{0}+\epsilon / w\right) \subset(s, t)$. Let $m=\frac{f(t)-f\left(x_{0}\right)}{t-x_{0}}$. Let k be equal to the larger of w or m. Finally, let $\delta=\epsilon / k$. If $\left|x-x_{0}\right|<\delta$, the inequality above implies that $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$.

