Math 280 Problems for October 1

Pythagoras Level

\#1. Suppose that $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$, is an increasing sequence of positive integers such that $a_{n+1}=a_{n}+a_{n 1}$ for $n \geq 2$ and $a_{7}=100$. Determine the value of a_{8}.
\#2. Suppose the following system of linear equations has no solutions. Find k.

$$
\begin{aligned}
& k x+y+z=1 \\
& x+k y+z=k \\
& x+y+k z=k^{2}
\end{aligned}
$$

Newton Level

\#3. Let a be a positive integer. In terms of a, determine the value of

$$
A=\lim _{x \rightarrow 0} x+\frac{a}{x+\frac{a}{x+\frac{a}{x+\frac{a}{\ldots .}}}}
$$

\#4. Determine the numerical value of

$$
\int_{0}^{\pi / 2} \frac{\cos (x)}{\sin (x)+\cos (x)} d x
$$

Wiles Level

$\# 5$. Let S be a set which is closed under the binary operation o with the following properties:
(1) There is an element $e \in S$ such that $a \circ e=e \circ a=a$ for each $a \in S$.
(2) $(a \circ b) \circ(c \circ d)=(a \circ d) \circ(c \circ b)$ for all $a, b, c, d \in S$.

Prove or disprove the following statements:
(a) \circ is associative on S.
(b) ○ is commutative on S.
$\# 6$. Evaluate $\lim _{k \rightarrow \infty} \frac{R_{k}(2)}{R_{k}(3)}$, where

$$
R_{k}(n)=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\cdots+\sqrt{2+\sqrt{n}}}}}}
$$

is defined using k square-roots. Hint: Trigonometry.

