Math 280 Solutions for October 1

Pythagoras Level

\#1. Suppose that $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$, is an increasing sequence of positive integers such that $a_{n+1}=a_{n}+a_{n 1}$ for $n \geq 2$ and $a_{7}=100$. Determine the value of a_{8}.
[Garden State UMC $2004 \# 11$] We have $a_{3}=a_{1}+a_{2}, a_{4}=a_{1}+2 a_{2}, a_{5}=2 a_{1}+3 a_{2}, a_{6}=3 a_{1}+5 a_{2}$, $a_{7}=5 a_{1}+8 a_{2}$. Now $5 a_{1}+8 a_{2}=100$ has only one integral solution with $a_{2}>a_{1}>0$. It is $a_{1}=4, a_{2}=10$. Then the sequence is $4,10,14,24,38,62,100,162, \ldots$.
\#2. Suppose the following system of linear equations has no solutions. Find k.

$$
\begin{aligned}
& k x+y+z=1 \\
& x+k y+z=k \\
& x+y+k z=k^{2}
\end{aligned}
$$

[Garden State UMC 2005 Team \#4] The linear system can also be written in the matrix form $A X=B$. Apply row reductions on the augment matrix we get:

$$
\left[\begin{array}{ccc|c}
k & 1 & 1 & 1 \\
1 & k & 1 & k \\
1 & 1 & k & k^{2}
\end{array}\right] \Rightarrow\left[\begin{array}{ccc|c}
1 & 1 & k & k^{2} \\
0 & k-1 & 1-k^{2} & k-k^{2} \\
0 & 1-k & 1-k^{2} & 1-k^{3}
\end{array}\right] \Rightarrow\left[\begin{array}{ccc|c}
1 & 0 & k+1 & k^{2}+k+1 \\
0 & 1 & -1 & -k-1 \\
0 & 0 & -k-2 & -k^{2}-2 k-2
\end{array}\right]
$$

Notice that if $k=1$, the system becomes one equation $x+y+z=1$ and hence has infinitely many solutions; so we may assume $k 1 \neq 0$. For the last matrix to have no solution, $k=2 .\left(\operatorname{det}(A)=k^{3} 3 k+2=(k 1)^{2}(k+2)=0\right.$, then A is NOT invertible.)

Newton Level

$\# 3$. Let a be a positive integer. In terms of a, determine the value of

$$
A=\lim _{x \rightarrow 0} x+\frac{a}{x+\frac{a}{x+\frac{a}{x+\frac{a}{\cdots}}}}
$$

[Garden State UMC $2004 \# 8$] From the limit, we have $A=\lim _{x \rightarrow 0} x+\frac{a}{A}$. So $A=a / A$ and $A^{2}=a$. So $A=\sqrt{a}$.
\#4. Determine the numerical value of

$$
\int_{0}^{\pi / 2} \frac{\cos (x)}{\sin (x)+\cos (x)} d x
$$

[Garden State UMC 2005\#8] Let I denote the value of this integral. Let $u=\pi / 2 x$. Then and the integral becomes

$$
I=\int_{\pi / 2}^{0} \frac{\cos (\pi / 2-u)}{\sin (\pi / 2-u)+\cos (\pi / 2-u)}(-d u)=\int_{0}^{\pi / 2} \frac{\sin (u)}{\sin (u)+\cos (u)} d x
$$

Adding the two integrals gives $2 I=\int_{0}^{\pi / 2} 1 d x=\pi / 2$, so $I=\pi / 4$.

Wiles Level

\#5. Let S be a set which is closed under the binary operation o with the following properties:
(1) There is an element $e \in S$ such that $a \circ e=e \circ a=a$ for each $a \in S$.
(2) $(a \circ b) \circ(c \circ d)=(a \circ d) \circ(c \circ b)$ for all $a, b, c, d \in S$.

Prove or disprove the following statements:
(a) \circ is associative on S.
(b) ○ is commutative on S.
[Garden State UMC 2004 Team \#5] Both hold.
(b) Commutativity:

$$
\begin{aligned}
a \circ b & =(e \circ a) \circ(e \circ b) \quad \text { by the given } \\
& =(e \circ b) \circ(e \circ a) \quad \\
& =b \circ a .
\end{aligned}
$$

(a) Associativity:

$$
\begin{aligned}
a \circ(b \circ c) & =a \circ(c \circ b) \quad \text { by }(\mathrm{b}) \\
& =(a \circ e) \circ(c \circ b) \\
& =(a \circ b) \circ(c \circ e) \\
& =(a \circ b) \circ c
\end{aligned}
$$

$\# 6$. Evaluate $\lim _{k \rightarrow \infty} \frac{R_{k}(2)}{R_{k}(3)}$, where

$$
R_{k}(n)=\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\cdots+\sqrt{2+\sqrt{n}}}}}}
$$

is defined using k square-roots. Hint: Trigonometry.
[Garden State UMC 2004 Team \#7] For $n=2$, 3, we have $\cos (\pi / 2 n)=\sqrt{n} / 2$. Then using the half-angle identity,

$$
\cos (\theta)=\sqrt{\frac{\cos (2 \theta)+1}{2}}, \text { for } 0 \leq \theta<\pi / 2
$$

we have $\cos (\pi /(4 n))=\frac{1}{2} \sqrt{2+\sqrt{n}}$. In general,

$$
\cos \left(\pi /\left(2^{k} n\right)\right)=\frac{1}{2} \sqrt{2+\sqrt{2+\cdots+\sqrt{2+\sqrt{n}}}}
$$

where there are k square roots. We can prove this by induction. Now $\sin (\theta)=\sqrt{\frac{1-\cos (2 \theta)}{2}}$, so

$$
R_{k}(n)=\sqrt{2-2 \cos \left(\pi /\left(2^{k} n\right)\right)}=2 \sin \left(\pi /\left(2^{k+1} n\right)\right), \text { for } n=2,3
$$

Then

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \frac{R_{k}(2)}{R_{k}(3)} & =\lim _{k \rightarrow \infty} \frac{2 \sin \left(\pi /\left(2^{k+1} 2\right)\right)}{2 \sin \left(\pi /\left(2^{k+1} 3\right)\right)} \\
& =\lim _{x \rightarrow 0} \frac{\sin (x / 2)}{\sin (x / 3)} \\
& =\lim _{x \rightarrow 0} \frac{(1 / 2) \cos (x / 2)}{(1 / 3) \cos (x / 3)} \\
& =\frac{3}{2}
\end{aligned}
$$

