Math 280 Problems for October 22

Pythagoras Level

Problem 1: Solve for x.

$$
\sum_{i=0}^{2010}\binom{2010}{i} 4^{\frac{i}{2}}=x^{201}
$$

Problem 2: Let $n \geq 1$. Pick at random a function

$$
f:\{1, \ldots, n\} \rightarrow\{1,2,3\}
$$

What is the probability Π of f not being onto (surjective)?
Newton Level
Problem 3: Evaluate the limit

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(e^{\frac{1}{n}}+e^{\frac{2}{n}}+e^{\frac{3}{n}}+\cdots+e^{\frac{n}{n}}\right)
$$

Problem 4: Find the power series (expanded about $\mathrm{x}=0$) for $\sqrt{\frac{1+x}{1-x}}$.

Wiles Level

Problem 5: Let $n \geq 2$ be an integer and define $f(x)=1-x^{n}$. For each $t \in(0,1)$, let A_{t} denote the area of the triangle in the first quadrant formed by the x-axis, y-axis, and the tangent line to $f(x)$ at $x=t$. Find $t \in(0,1)$ so that A_{t} is a minimum.

Problem 6: Let S be a set of real numbers which is closed under multiplication (that is, if a and b are in S, then so is $a b$). Let T and U be disjoint subsets of S whose union is S. Given that the product of any three (not necessarily distinct) elements of T is in T and that the product of any three elements of U is in U, show that at least one of the two subsets T, U is closed under multiplication.

