Math 280 Solutions for October 22

Pythagoras Level

Problem 1: [Ohio MAA $2005 \# 2$] Use the Binomial Theorem to solve

$$
\sum_{i=0}^{2010}\binom{2010}{i} 4^{\frac{i}{2}}=\sum_{i=0}^{2010}\binom{2010}{i} 2^{i}=(1+2)^{2010}=3^{10 \cdot 201}
$$

So $x=3^{10}$.
Problem 2: [Ohio MAA $2005 \# 4$] If $n \leq 2$ then automatically $f:\{1, \ldots, n\} \rightarrow\{1,2,3\}$ is not onto, so the probability is 1 . Now let $n \geq 3$. Let $E 1$ be the set of functions $f:\{1, \ldots, n\} \rightarrow\{1,2,3\}$ for which the element 1 is not in the range of f. Similarly we define $E 2$ and $E 3$. Then "Not being onto" means $f \in E 1 \cup E 2 \cup E 3$. By inclusion-exclusion,

$$
\begin{gathered}
|E 1 \cup E 2 \cup E 3|=|E 1|+|E 2|+|E 3|-|E 1 \cap E 2|-|E 1 \cap E 3|-|E 2 \cap E 3|+|E 1 \cap E 2 \cap E 3|= \\
2^{n}+2^{n}+2^{n}-1-1-1+0=3\left(2^{n}-1\right)
\end{gathered}
$$

The probability Π of f not being surjective is, therefore,

$$
\Pi=\frac{3\left(2^{n}-1\right)}{3^{n}}=\frac{2^{n}-1}{3^{n-1}}
$$

Newton Level

Problem 3: [Ohio MAA 2005 \#7]

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n}\left(e^{\frac{1}{n}}+e^{\frac{2}{n}}+e^{\frac{3}{n}}+\cdots+e^{\frac{n}{n}}\right) & =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(e^{1 / n}\right)^{k} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \frac{e^{1 / n}-e^{(n+1) / n}}{1-e^{1 / n}} \\
& =(1-e) \lim _{n \rightarrow \infty} \frac{\frac{e^{1 / n}}{n}}{1-e^{1 / n}} \\
& =(1-e) \lim _{n \rightarrow \infty} \frac{\frac{n e^{1 / n}\left(-1 / n^{2}\right)-e^{1 / n}}{n^{2}}}{-e^{1 / n}\left(-1 / n^{2}\right)} \\
& =(1-e) \lim _{n \rightarrow \infty} \frac{-e^{1 / n} / n-e^{1 / n}}{e^{1 / n}} \\
& =(1-e) \lim _{n \rightarrow \infty}\left(-\frac{1}{n}-1\right) \\
& =(e-1)
\end{aligned}
$$

Problem 4: [Nick's Math Puzzles \#148] We write $\sqrt{\frac{1+x}{1-x}}$ as $(1+x)\left(1-x^{2}\right)^{-1 / 2}$, and expand the latter term as a binomial series. We have

$$
\left(1-x^{2}\right)^{-1 / 2}=1+(-1 / 2)\left(-x^{2}\right)+\frac{(-1 / 2)(-3 / 2)}{2!}\left(-x^{2}\right)^{2}+\ldots+\frac{(-1 / 2)(-3 / 2) \cdots(-(2 n-1) / 2)}{n!}\left(-x^{2}\right)^{n}+\ldots
$$

The coefficient of the general term, $x^{2 n}$, is given by

$$
\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n} \cdot n!}=\frac{(2 n-1)!!}{(2 n)!!}
$$

Therefore, the power series expansion of

$$
\sqrt{\frac{1+x}{1-x}}=\sum_{n=0}^{\infty} \frac{(2 n-1)!!}{(2 n)!!}\left(x^{2 n}+x^{2 n+1}\right)
$$

Wiles Level

Problem 5: [Ohio MAA 2005 \#9] For $f(x)=1-x^{n}$, the equation of the tangent line to f at the point $(t, f(t))$ is $y-\left(1-t^{n}\right)=$ $-n t^{n-1}(x-t)$. The x and y intercepts of this line are $\frac{(n-1) t^{n}+1}{n t^{n-1}}$ and $(n-1) t^{n}+1$ respectively. Thus the area of the triangle is

$$
A_{t}=\frac{1}{2} \cdot \frac{(n-1) t^{n}+1}{n t^{n-1}} \cdot\left((n-1) t^{n}+1\right)
$$

Differentiating A_{t} with respect to t gives

$$
\frac{d A}{d t}=\frac{n-1}{2 n t^{n}}\left(\left(n^{2}-1\right) t^{2 n}+2 t^{n}-1\right)
$$

Setting the term inside the brackets above to zero yields

$$
t^{n}=\frac{-1 \pm n}{n^{2}-1}
$$

The term

$$
t^{n}=\frac{-1-n}{n^{2}-1}
$$

yields either negative or complex solutions, so the solution is

$$
t^{n}=\frac{-1+n}{n^{2}-1}=\frac{1}{n+1}
$$

and thus

$$
t=\sqrt[n]{\frac{1}{n+1}}
$$

Problem 6: [Putnam 1995 A-1] Suppose on the contrary that there exist $t_{1}, t_{2} \in T$ with $t_{1} t_{2} \in U$ and $u_{1}, u_{2} \in U$ with $u_{1} u_{2} \in T$. Then $\left(t_{1} t_{2}\right) u_{1} u_{2} \in U$ while $t_{1} t_{2}\left(u_{1} u_{2}\right) \in T$, contradiction.

