
Math 280 Solutions for October 22

Pythagoras Level

Problem 1: [Ohio MAA 2005 #2] Use the Binomial Theorem to solve
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2i = (1 + 2)2010 = 310·201

So x = 310.

Problem 2: [Ohio MAA 2005 #4] If n ≤ 2 then automatically f : {1, ..., n} → {1, 2, 3} is not onto, so the probability is 1. Now
let n ≥ 3. Let E1 be the set of functions f : {1, ..., n} → {1, 2, 3} for which the element 1 is not in the range of f . Similarly we
define E2 and E3. Then “Not being onto” means f ∈ E1 ∪ E2 ∪ E3. By inclusion-exclusion,

|E1 ∪ E2 ∪ E3| = |E1|+ |E2|+ |E3| − |E1 ∩ E2| − |E1 ∩ E3| − |E2 ∩ E3|+ |E1 ∩ E2 ∩ E3| =

2n + 2n + 2n − 1− 1− 1 + 0 = 3(2n − 1)

The probability Π of f not being surjective is, therefore,
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Newton Level

Problem 3: [Ohio MAA 2005 #7]
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Problem 4: [Nick’s Math Puzzles #148] We write
√

1+x
1−x as (1 + x)(1 − x2)−1/2, and expand the latter term as a binomial

series. We have

(1− x2)−1/2 = 1 + (−1/2)(−x2) +
(−1/2)(−3/2)
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The coefficient of the general term, x2n, is given by
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Wiles Level

Problem 5: [Ohio MAA 2005 #9] For f(x) = 1−xn, the equation of the tangent line to f at the point (t, f(t)) is y− (1− tn) =

−ntn−1(x− t). The x and y intercepts of this line are
(n− 1)tn + 1

ntn−1
and (n− 1)tn + 1 respectively. Thus the area of the triangle

is
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Differentiating At with respect to t gives
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)
Setting the term inside the brackets above to zero yields
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The term
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yields either negative or complex solutions, so the solution is
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Problem 6: [Putnam 1995 A-1] Suppose on the contrary that there exist t1, t2 ∈ T with t1t2 ∈ U and u1, u2 ∈ U with u1u2 ∈ T .
Then (t1t2)u1u2 ∈ U while t1t2(u1u2) ∈ T , contradiction.


