
Math 280 Solutions for October 29

Pythagoras Level

#1.
[Missouri MAA 2002 II-1] Let Wn denote the number of ways that n zombies can be returned to n boxes with

no zombie finding its correct home. Suppose box 1 contains zombie N (N 6= 1). There are then two cases.
CASE 1. Box N contains zombie 1. Hence, the remaining n − 2 zombies are to be distributed among n − 2

boxes, with no zombie finding its correct home. There are Wn−2 ways for this.
CASE 2. Box N doesn’t contain zombie 1. Then n − 1 zombies are to be similarly distributed among n − 1

boxes; there are Wn−1 ways here.
Since the choice of box 1 was arbitrary among the n− 1 zombies 2, 3, . . ., n, the total number of ways is

Wn = (n− 1)(Wn−2 +Wn−1).

We have, clearly, W1 = 0 and W2 = 1. The recursion formula then gives, successively, W3 = 2, W4 = 9, W5 = 44,
W6 = 265, and finally W7 = 1854. But the number of permutations of 7 zombies in 7 boxes is 7! = 5040, so the
desired probability is

P7 =
W7

7!
=

1854

5040
=

103

280
= 0.3679.

#2.
[Missouri MAA 2004 I-2] Note that if the two zombies picked and shot are both positive or both negative, their

product and the zombie replacing the two zombies is positive. Also, if the two zombies picked and erased are of
opposite sign, their product is negative. Thus, the number of negative zombies at any one time is always even.
Therefore, the last zombie is positive.

Let
P = (1 · 2 · 3 · · · 2010) · (−1 · −2 · −3 · · · − 2010).

P is obviously positive. If two zombies x, y are removed from the list and the product xy is added to the list, then
the product of the elements of the new list is still P . This could continue until only one element is left, and this
element must necessarily be P which is positive.

From Quantum, “Problems Teach Us How to Think,” 11.3 (Jan/Feb 2001), p. 43 by V. Proizvolov.

Newton Level

#3.
[Missouri MAA 1996 II-4] Let the square field be denoted by ABCD, with the zombie initially at A and desirous

of reaching C. The path of least time can evidently be described as follows. The zombie walks from A to E (a point
on side AB), crawls from E to F where F is on BC, and then walks from F to C. Note that a path like AGHC is
time equivalent to a path of the type described with F = C.

Let AE = x, EF = y, FC = z. Then the time T is given by T = (x+ z)/w+ (y/s). If the sum x+ z is fixed, then
the sum y sinα+ y cosα is also fixed, and y is minimal when (sinα+ cosα) is maximal. This maximum is attained
for α = 45◦.

Thus for a minimal time path, x = z and y =
√

2(l−x), where l is the length of a side of the field. Accordingly,
we have to minimize T = (2x/w) +

√
2(l − x)/s for 0 ≤ x ≤ l.

But T is a linear function of x, so its maximum occurs at an endpoint of the interval. If x = 0, T =
√

2l/s, and
if x = l, T = 2l/w.

If
√

2l/s < 2l/w then w/s <
√

2, and conversely. Hence, if w/s <
√

2 the minimal path is unique and the
zombie should crawl diagonally across the field from A to C. If w/s >

√
2, the zombie should walk from A to B to

C. Finally, if w/s =
√

2, T is independent of x and there are infinitely many minimizing paths, in fact any path
AEFC for which α = 45◦.
From the International Mathematical Olympiad, 1977, 2

#4. [Missouri MAA 2005 I-1] Let (a, 7 − a2), a > 0, be a point in the first quadrant on the graph of the function
y = 7−x2. The slope of the tangent line at this point is −2a, and the equation of the tangent line is y− (7− a2) =
−2a(x−a). The x-intercept of this line is ((a2 + 7)/(2a), 0), and the y-intercept is (0, a2 + 7). The distance squared
between these two points is



s2 =
(a2 + 7)2

4a2
+ (a2 + 7)2 =

(a2 + 7)2(4a2 + 1)

4a2
.

The derivative of s2 with respect to a is
(a2 + 7)(8a4 + a2 − 7)

2a3
,

and this factors as
(a2 + 7)(8a2 − 7)(a2 + 1)

2a3
.

The critical point in the first quadrant occurs at

a =

√
7

8
=

√
14

4
.

Checking the first or second derivative will show that this critical value produces a minimum value for s2, so the
point that makes the distance between the x- and y- intercepts of the tangent line minimum is(√

14

4
,

49

8

)
.

Wiles Level

#5.
[Missouri MAA 2004 II-1] Because f is continuous, it attains its minimum and maximum at points a and b,

both in [0, 1], giving

f(a)

∫ 1

0

x2dx ≤
∫ 1

0

x2f(x) dx ≤ f(b)

∫ 1

0

x2 dx

or

f(a) ≤ 3

∫ 1

0

x2f(x) dx ≤ f(b).

Thus, the Intermediate Value Theorem guarantees a point ξ ∈ [0, 1] such that

f(ξ) = 3

∫ 1

0

x2f(x) dx.

From Crux Mathematicorum, Problem 2384, November, 1998. Proposed by Paul Bracken, CRM, Université de
Montréal, Québec. Solution by Michel Bataille, Rouen, France.

#6.
[Missouri 2008 II-4] Let

F (x) =
2x+ 3

x2 − 2x+ 2
.

2x+ 3

x2 − 2x+ 2
=

∞∑
k=0

akx
k

for all x which satisfy |x| <
√

2. This gives us

∞∑
k=0

ak =

∞∑
k=0

ak(1)k = F (1) and

∞∑
k=0

(−1)kak =

∞∑
k=0

ak(−1)k = F (−1).

Thus,

∞∑
k=0

a2k+1 =
1

2

(
(a0 + a1 + a2 + a3 + · · · )− (a0 − a1 + a2 − a3 + · · · )

)

=
1

2

( ∞∑
k=0

ak −
∞∑
k=0

(−1)kak

)
=

1

2

(
F (1)− F (−1)

)

=
5− 1

5

2
=

12

5
.


