Name:

1. For every pair of real numbers a and b, define a function $f_{a, b}: \mathbb{R} \rightarrow \mathbb{R}$ by the formula

$$
f_{a, b}(x)=a x+b
$$

(a) Show that $f_{1, b} \circ f_{a, 0}=f_{a, b}$.
(b) Prove or disprove that $f_{a, b}^{-1}$ exists. (Note: $f_{a, b}^{-1}$ satisfies $f_{a, b}^{-1} \circ f_{a, b}=f_{1,0}$.)
2. Let $M_{2}(\mathbb{R})$ be the 2×2 matrices with real entries. Set

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

and let

$$
\mathcal{B}=\left\{X \in M_{2}(\mathbb{R}) \mid A X=X A\right\}
$$

(a) Prove or disprove: if $P, Q \in \mathcal{B}$, then $P+Q \in \mathcal{B}$.
(b) Prove or disprove: if $P, Q \in \mathcal{B}$, then $P Q \in \mathcal{B}$.
3. Let $f: X \rightarrow Y$ be an onto map of sets. For $a, b \in X$, consider the relation

$$
a \sim b \text { if and only if } f(a)=f(b)
$$

Prove or disprove that this is an equivalence relation.

