Name:

1. Prove or disprove: If $\operatorname{gcd}(a, r)=c$ and $\operatorname{gcd}(b, r)=d$, then $\operatorname{gcd}(a b, r)=c d$.
2. Give, with proof, a closed formula (i.e. a formula without "...") for

$$
1+x+x^{2}+x^{3}+\cdots+x^{n-1}+\frac{x^{n}}{x-1}
$$

for any $n \geq 1$.
3. Prove that if $a^{n} \mid b^{n}$ then $a \mid b$. (Hint: Set $d=\operatorname{gcd}(a, b)$ and write $a=r d$ and $b=s d$, where $\operatorname{gcd}(r, s)=1$. Then you can use without proof that if $\operatorname{gcd}(r, s)=1$, then $\operatorname{gcd}\left(r^{n}, s^{n}\right)=1$. Then show that $r=1$.)
4. Find, with proof, all integers x such that $3 x+7$ is divisible by 11 .

