Name:

Recall: When it's a disproof, you get an addition 2 bonus points for stating a true statement and proving it.

1. Let F be a field and let

$$
I=\left\{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \mid a_{i} \in F \text { and } a_{n}+a_{n-1}+\cdots+a_{0}=0\right\}
$$

Show that I is an ideal of $F[x]$. By Theorem 17.12, it is principal, so also give the generator.
2. In the ring $\mathbb{R}[x] /\left\langle x^{2}+7 x+2\right\rangle$, compute the multiplicative inverse of $3 x+1$. In other words find $(3 x+1)^{-1} \bmod x^{2}+7 x+2$.
3. Prove or disprove: The ideal $\langle x\rangle$ in $\mathbb{Q}[x]$ is maximal.

