Name:

Recall: When it's a disproof, you get an addition 2 bonus points for stating a true statement and proving it.

1. Prove or disprove: If $g_{1} H=g_{2} H$, then $H g_{1}=H g_{2}$.
2. Prove or disprove: $(\mathbb{R},+)$ is isomorphic to $\left(\mathbb{R}^{\times}, \cdot\right)$.
3. Let $I_{\mathbb{R}^{\times}}=\left\{\left.\left(\begin{array}{cc}r & 0 \\ 0 & r\end{array}\right) \right\rvert\, r \in \mathbb{R}^{\times}\right\}$. Then $I_{\mathbb{R} \times} \subseteq \mathrm{GL}_{2}(\mathbb{R})$ and the set of right cosets

$$
I_{\mathbb{R} \times} \times \mathrm{GL}_{2}(\mathbb{R})=\left\{I_{\mathbb{R}} \times M \mid M \in \mathrm{GL}_{2}(\mathbb{R})\right\}
$$

forms a group under matrix multiplication. Let the linear transformations on $\mathbb{C}$ be denoted

$$
L=\left\{\left.f(x)=\frac{a x+b}{c x+d} \right\rvert\, a, b, c, d \in \mathbb{R}, a d-b c \neq 0\right\}
$$

Then $L$ is a group under functional composition. Prove: $I_{\mathbb{R}} \times \mathrm{GL}_{2}(\mathbb{R}) \cong L$.

