
Computing square roots mod p

We now have very effective ways to determine 
whether the quadratic congruence     

€ 

x2 ≡ a (mod p),  p  
an odd prime, is solvable.  What we need to 
complete this discussion is an effective technique to 

compute a solution if one exists, that is, if 
    

€ 

a
p

 

 
 

 

 
 = 1.

Consequently, for the remainder of this discussion 
we will assume that a is a quadratic residue mod p. 

Now it turns out that finding a solution to 

    

€ 

x2 ≡ a (mod p)  is easy if     

€ 

p ≡ 3 (mod4): we write 

    

€ 

p = 4k + 3, then set     

€ 

x ≡ ak+1 (mod p) .  By Euler’s 
Criterion,

    

€ 

x2 ≡ a2k+2 ≡ a2k+1 ⋅a ≡ a
p−1
2 ⋅a ≡

a
p

 

 
 

 

 
 ⋅a ≡ a (mod p)

so     

€ 

x ≡ ak+1 (mod p)  is a solution to the original 

quadratic congruence.  That is,     

€ 

ak+1 = a
p+1
4  is a 

square root of a mod p.

Of course, this method fails if     

€ 

p ≡ 1 (mod 4).  But we 
can further differentiate values of p if instead we 
work mod 8: if     

€ 

p ≡ 1 (mod 4), then either 
    

€ 

p ≡ 1 (mod 8) or     

€ 

p ≡ 5 (mod 8).  



Consider the latter case,     

€ 

p = 8k + 5, first. By Euler’s 

Criterion, we have that     

€ 

a
p−1
2 ≡ 1 (mod p) , so 

    

€ 

a
p−1
4 ≡ ±1 (mod p) .  If     

€ 

a
p−1
4 ≡ 1 (mod p) , then setting 

    

€ 

x ≡ ak+1 (mod p)  yields a solution since

    

€ 

x2 ≡ a2k+2 ≡ a
p+3
4 ≡ a

p−1
4 ⋅a ≡ a (mod p).

If instead,     

€ 

a
p−1
4 ≡ −1 (mod p) , then 

    

€ 

x ≡ 22k+1ak+1 (mod p) yields a solution since 

    

€ 

x2 ≡ 24k+2a2k+2 ≡ 2
p−1
2 a

p+3
4

≡ 2
p

 

 
 

 

 
 ⋅a

p−1
4 ⋅a ≡ −1 ⋅−1 ⋅a ≡ a(mod p).

We’re still left with the case     

€ 

p ≡ 1 (mod 8).  Now we 
could continue this development by producing more 
and more complicated formulas for computing the 
square root of a mod p, depending on the residue 
class of p modulo higher and higher powers of 2, 
but thankfully this is unnecessary, as it is possible 
to set forth an algorithm that does this 
systematically.



Write     

€ 

p−1 = 2rs, with s odd.  Taking a cue from the 
methods discussed above, we suggest that 

    

€ 

y ≡ a
s+1
2 (mod p)  might be a good “first try” at a 

square root for a.  Observe that 

    

€ 

y2 ≡ as+1 ≡ as ⋅a (mod p) .  It follows that since both 

    

€ 

y2 and a are quadratic residues mod p, so must   

€ 

as  
be.  This reduces our problem to the computation of 
a square root for     

€ 

b ≡ as (mod p), for if     

€ 

z2 ≡ b (mod p) , 
then

    

€ 

(yz−1)2 ≡ as+1 ⋅a−s ≡ a (mod p)

and so     

€ 

yz−1 is a square root of a mod p.

On the face of it, it doesn’t look like we have gained 
much by transferring the problem of computing a 
square root y of a to that of computing a square root 
z of b.  But indeed we have, since

    

€ 

b2r−1
= (as )2r−1

= a
p−1
2 ≡

a
p

 

 
 

 

 
 ≡ 1 (mod p)⇒ ord pb|2r−1

so that 

    

€ 

ordpz = 2 ⋅ord pb|2r ⇒ ordpz  is a power of 2 ≤ 2r

which severely limits the possible values for z.



For those who know some group theory, notice also 
that the set of nonzero residue classes mod p whose 
order divides a power of 2 is a subgroup of the 
group of units mod p.  That is, if     

€ 

z1 and     

€ 

z2 have 

orders mod p equal to     

€ 

2r1  and     

€ 

2r2 , respectively, then 
the order of     

€ 

z1z2 is the larger of     

€ 

2r1  and     

€ 

2r2 , hence is 
also a power of 2; further, the inverse of     

€ 

y1 has 

order     

€ 

2r1  as well (since     

€ 

(z−1)2r
≡ (z2r

)−1 ≡ 1).  In fact, 
this subgroup is called the 2-Sylow subgroup of the 
group of units mod p.  

We will denote the set of elements y whose order 
mod p is a power of 2 as S.  (This means that S is 
the 2-Sylow subgroup of the group of units mod p.)  
It may seem that we would have to turn to finding 
a primitive root mod p to get at the structure of the  
elements in S, but it turns out to be much easier:

Lemma  If n is any quadratic nonresidue mod p, 

and     

€ 

m ≡ ns (mod p) , then       

€ 

S = {m,m2,m3,K,m2r
}.

Proof  By EC,     

€ 

m2r−1
= (ns)2r−1

= n
p−1
2 ≡ −1 (mod p).  

But by Fermat’s Little Theorem, 

    

€ 

m2r
= (ns )2r

= np−1 ≡ 1 (mod p) , so we must have that 

    

€ 

ordp m = 2r .  Thus the first     

€ 

2r  powers of m are 
distinct mod p and all lie in S.  But as there are 

    

€ 

ϕ(2k) elements of order     

€ 

2k, and each of these orders 



is a factor of     

€ 

2r , the total number of elements whose 
order divides     

€ 

2r  is

    

€ 

ϕ(2k)
k=0

r
∑ = ϕ(d)

d|2r

∑ = 2r ,

hence we have acccounted for all the elements of S.  
The result follows.  //

Returning to our original problem: to solve 

    

€ 

x2 ≡ a (mod p) , we search instead for a square root z 

of     

€ 

b ≡ as (mod p), so that with     

€ 

y ≡ a
s+1
2 (mod p) , we 

can then compute     

€ 

x ≡ yz−1 (mod p), which will be 
the desired square root of a (since     

€ 

y2 ≡ z2a (mod p) .)  
As the order of b divides     

€ 

2r−1, z will also lie in S and 
is thus some power of   

€ 

m = ns , where n is some 
quadratic nonresidue mod p.  Indeed,     

€ 

z ≡ mk (mod p) 
implies that     

€ 

b ≡ z2 ≡ m2k (mod p).  That is, b must be 
some even power of m.  Halving this even power 
will locate the desired value of z.

Now one way to proceed with finding z is to simply 
search through all even powers of m until b 
appears.  This will take no more than r steps.  But 
in fact, there is a procedure that will accomplish 
this without having to calculate the corresponding 
powers of m.  It is based on the



Lemma  If     

€ 

ordp m = 2r  and     

€ 

ordp b = 2u  with u < r, 

then     

€ 

ordp (m2r−u
b) = 2v with v < u.

Proof  Since     

€ 

ordp m = 2r , we have     

€ 

m2r−1
/ ≡ 1 (mod p) 

but     

€ 

(m2r−1
)2 ≡ m2r

≡ 1 (mod p), whence 

    

€ 

m2r−1
≡ −1(mod p).  Similarly,     

€ 

b2u−1
≡ −1 (mod p) .  

Therefore, 

    

€ 

(m2r−u
b)2u−1

≡ m2r−1
b2u−1

≡ (−1)(−1)≡ 1 (mod p),

which implies that the order of     

€ 

m2r−u
b mod p must 

divide     

€ 

2u−1.  //

The importance of this observation is that if b = 1, 
finding z is trivial, for then z = 1.  If b ≠ 1, the 
lemma allows us to adjust the value of b by 
multiplication by a perfect square (namely, an even 
power of m), which replaces b with a new value 

    

€ 

′ b = m2r−u
b having smaller order than b.  This 

adjustment makes it no more difficult to find a 

square root (z gets “adjusted” by a factor of     

€ 

m2r−u−1
), 

but as the order of   

€ 

′ b  is smaller, it means that   

€ 

′ b  is 
in some sense “closer” to 1 (whose order is the 
smallest possible).  By repeating this process, we 
eventually reach a stage where b has been reduced 
to 1, and the computation is complete.



We illustrate with some examples:

Example:     

€ 

x2 ≡ 2 (mod41)

Factor 41 – 1 =   

€ 

23 ⋅5 (so that r = 3 and s = 5), and 

put     

€ 

y ≡ 2
5+1
2 ≡ 8 (mod 41) and     

€ 

b ≡ 25 ≡ 32 (mod 41).  
We know that b has order dividing   

€ 

23−1; since 

    

€ 

b2 ≡ 322 ≡ −1(mod 41), b has order equal to   

€ 

22.  
Next, take     

€ 

n = 3 as a quadratic nonresidue, noting 
by QR that

  

€ 

3
41

 

 
 

 

 
 =

41
3

 

 
 

 

 
 =

−1
3

 

 
 

 

 
 = −1

and set     

€ 

m ≡ 35 ≡ 38 (mod 41).  We know that z 
satisfies     

€ 

z2 ≡ b (mod 41), but by the lemma, 
multiplication of this last congruence by 

    

€ 

m2r−u
≡ 3823−2

≡ 9 (mod 41) serves to adjust the value 
of b to     

€ 

′ b ≡ 9b ≡ 1 (mod 41) and adjusts z by the factor 

    

€ 

m2r−u−1
≡ 3823−2

≡ 38 (mod 41).  Also, note that 
replacing z with     

€ 

′ z ≡ 38z (mod 41) means that 

    

€ 

x ≡ yz−1 ≡ 8 ⋅38 ′ z −1 (mod 41).

Repeating this procedure, we have that 
    

€ 

′ b ≡ 1 (mod41), so a square root is     

€ 

′ z = 1, yielding 
    

€ 

x ≡ 8 ⋅38 ⋅1 ≡ 17(mod 41) in one iteration.



We can make this computation more amenable to 
automation by organizing the steps as follows 
(here, 

€ 

≡ means congruence mod p):

Given: p = 41 Initialize: r = 3 (    

€ 

p−1 = 2rs)
a = 2 s = 5

n 

€ 

≡ 3 (
  

€ 

3
41

 

 
 

 

 
 = −1)

m 

€ 

≡ 38 (  

€ 

m ≡ ns)

Iterate (until     

€ 

ui = 0, i.e., bi = 1):

17(    

€ 

xi+1 ≡ m2r−ui −1
xi )  

€ 

201 (    

€ 

bi+1 ≡ m2r−ui
bi )1

8  (x0 = y     

€ 

≡ a
s+1
2 )  

€ 

2232  (    

€ 

b0 ≡ as)0

xiord41 bi    

€ 

= 2uibii

The desired solution to the original congruence 
appears in the lower right cell of the table.



Example:      

€ 

x2 ≡ 7 (mod113)

Given: p = 113    Initialize: r = 4 (    

€ 

p−1 = 24 ⋅7)
a = 7 s = 7

n 

€ 

≡ 3 (
  

€ 

3
113

 

 
 

 

 
 = −1)

m 

€ 

≡ 40 (  

€ 

m ≡ ns)

Iterate (until     

€ 

ui = 0, i.e., bi = 1):

i               

€ 

bi ord   

€ 

bi  =     

€ 

2ui               

€ 

xi

0 –1 (    

€ 

b0 ≡ as)          

€ 

21 28 (x0 = y     

€ 

≡ a
s+1
2 )

1 1 (    

€ 

bi+1 ≡ m2r−ui
bi )          

€ 

20 32 (    

€ 

xi+1 ≡ m2r−ui −1
xi )

Thus     

€ 

x ≡ 32 (mod113).



Example:      

€ 

x2 ≡ 103 (mod641)

Given: p = 641    Initialize: r = 7 (    

€ 

p−1 = 27 ⋅5)
a = 103 s = 5

n 

€ 

≡ 3 (
  

€ 

3
641

 

 
 

 

 
 = −1)

m 

€ 

≡ 243   (  

€ 

m ≡ ns)

Iterate (until     

€ 

ui = 0, i.e., bi = 1):

i               

€ 

bi  ord   

€ 

bi  =     

€ 

2ui               

€ 

xi

0 625 (    

€ 

b0 ≡ as)          

€ 

24 463 (x0 = y     

€ 

≡ a
s+1
2 )

1 –1 (    

€ 

bi+1 ≡ m2r−ui
bi )          

€ 

21 365(    

€ 

xi+1 ≡ m2r−ui −1
xi )

2 1          

€ 

20 198

Thus     

€ 

x ≡ 198 (mod641).


