Computing square roots mod p

We now have very effective ways to determine
whether the quadratic congruence x> = a (mod p), p
an odd prime, is solvable. What we need to
complete this discussion is an effective technique to
a
p

Consequently, for the remainder of this discussion
we will assume that a is a quadratic residue mod p.

compute a solution if one exists, that is, if ( =1.

Now it turns out that finding a solution to
x* = a (mod p) is easy if p=3 (mod4): we write

p =4k +3, then set x=a*'(mod p). By Euler’s
Criterion,
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so x=a"(mod p) is a solution to the original
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quadratic congruence. That is, a
square root of @ mod p.

Of course, this method fails if p=1(mod4). But we

can further differentiate values of p if instead we
work mod 8: if p=1(mod4), then either
p=1(mod8) or p=5(mod8).



Consider the latter case, p= 8k +5, first. By Euler’s
p-1
Criterion, we have that ¢ 2 =1 (mod p), so
p-1 p-1

at =+x1(modp). If a * =1(modp), then setting
k+1 . . .
a’  (mod p) yields a solution since
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-a=a(modp).
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If instead, a * =-1(mod p), then
x = 221" (mod p) yields a solution since
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x2 = 24k+2a2k+2 = 2 2 a 4

= (%)-aﬂ-as—l-—l-as a(mod p).

We're still left with the case p=1(mod8). Now we
could continue this development by producing more
and more complicated formulas for computing the
square root of a mod p, depending on the residue
class of p modulo higher and higher powers of 2,
but thankfully this is unnecessary, as it is possible
to set forth an algorithm that does this
systematically.



Write p-1=2"s, with s odd. Taking a cue from the
methods discussed above, we suggest that

s+1

y=a? (mod p) might be a good “first try” at a
square root for a. Observe that

y2 =o't =a’ a(mod p). It follows that since both

y? and a are quadratic residues mod p, so must a°
be. This reduces our problem to the computation of

a square root for b = a’ (mod p), for if 2% =b (mod D),
then

1

(yz )2 =a*! - a™ = a (mod p)

-1 .
and so yz  is a square root of @ mod p.

On the face of it, it doesn’t look like we have gained
much by transferring the problem of computing a
square root y of a to that of computing a square root
z of b. But indeed we have, since
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so that
ord,z=2-ord b|2" = ord z is a power of 2 <2’

which severely limits the possible values for z.



For those who know some group theory, notice also
that the set of nonzero residue classes mod p whose
order divides a power of 2 is a subgroup of the

group of units mod p. That is, if z; and z, have
orders mod p equal to 2" and 2", respectively, then
the order of z,z, is the larger of 2" and 27, hence is
also a power of 2; further, the inverse of y; has
order 2 as well (since (z1)? =(2¥)1=1). In fact,

this subgroup is called the 2-Sylow subgroup of the
group of units mod p.

We will denote the set of elements y whose order
mod p is a power of 2 as S. (This means that S is
the 2-Sylow subgroup of the group of units mod p.)
It may seem that we would have to turn to finding
a primitive root mod p to get at the structure of the
elements in S, but it turns out to be much easier:

Lemma If n is any quadratic nonresidue mod p,

and m =n’ (mod p), then S = {m,mz,m?’,...,mzr}.

p-1

Proof By EC, m? " = (ns)zr-l =n %2 =-1(mod p).
But by Fermat’s Little Theorem,

m? =(n*)? =n?"' =1(mod p), so we must have that
ord,m=2". Thus the first 2" powers of m are
distinct mod p and all lie in S. But as there are
@(2") elements of order 2%, and each of these orders



is a factor of 2", the total number of elements whose
order divides 2" is

Se@h= 3 od) =2,

k=0 d2’

hence we have acccounted for all the elements of S.
The result follows. //

Returning to our original problem: to solve
2 :
x” = a(mod p), we search instead for a square root z

s+1

of b= a®(mod p), so that with y = a ? (mod p), we
can then compute x = yz ! (mod p), which will be
the desired square root of a (since y* = z°a (mod p).)
As the order of b divides Zr_l, z will also lie in S and
is thus some power of m =n°, where n is some
quadratic nonresidue mod p. Indeed, z = m" (mod p)
implies that b = 22 = m**(mod p). That is, b must be

some even power of m. Halving this even power
will locate the desired value of z.

Now one way to proceed with finding z is to simply
search through all even powers of m until b
appears. This will take no more than r steps. But
in fact, there is a procedure that will accomplish
this without having to calculate the corresponding
powers of m. It is based on the



Lemma If ord,m=2" and ord,b=2" with u <,

then ord , (m "b)=2" with v < u.

Proof Since ord,m = 2", we have m2r_1 %=1 (mod p)

2r—1 ) B or B
but (m~ )" =m" =1(mod p), whence

mzr_1 = -1(mod p). Similarly, bzu_1 = -1 (mod p).
Therefore,
r-u 2u—1 B 2r—1 2u—1 B B
(m® b)Y =m" b =(-1)(-1)=1(mod p),

which implies that the order of m® b mod p must
divide 2“7, //

The importance of this observation is that if b=1,
finding z is trivial, for then z=1. If b # 1, the
lemma allows us to adjust the value of b by
multiplication by a perfect square (namely, an even
power of m), which replaces b with a new value

r-u

b'=m® b having smaller order than 5. This
adjustment makes it no more difficult to find a

r-u-1

square root (z gets “adjusted” by a factor of m* ),
but as the order of b’ is smaller, it means that &' is
in some sense “closer” to 1 (whose order is the
smallest possible). By repeating this process, we
eventually reach a stage where b has been reduced
to 1, and the computation is complete.



We illustrate with some examples:
Example: x* =2 (mod41)

Factor 41 —1=2%-5 (so that r=38 and s = 5), and

5+1

put y=22 =8(mod41) and b = 2° = 32 (mod 41).
We know that b has order dividing 2°; since

b* = 32% = —-1(mod 41), b has order equal to 27
Next, take n =3 as a quadratic nonresidue, noting
by QR that

and set m = 3° =38 (mod41). We know that z

satisfies z° = b (mod 41), but by the lemma,
multiplication of this last congruence by

m? " = 3823_2 = 9(mod41) serves to adjust the value
of bto b'=9b=1(mod41) and adjusts z by the factor

2r—u—1

m = 3823_2 = 38 (mod41). Also, note that
replacing z with z'= 38z (mod 41) means that

x=yz ' =8-382""(mod41).

Repeating this procedure, we have that
b'=1(mod41), so a square root is z' =1, yielding
x=8-38-1=17(mod41) in one iteration.



We can make this computation more amenable to
automation by organizing the steps as follows
(here, = means congruence mod p):

Given: p=41
a=2

Initialize: r=
S

Iterate (until u; =0, i.e., b; =1):

l bi OI’d41 bi= 2ul Xi

s+l
0 32 (bOEClS) 22 8(xO:yEa2)
1 1 (bi+l = er_ui bl) 20 17( X1 = m2r_ui_1xi)

The desired solution to the original congruence
appears in the lower right cell of the table.




Example: x* =7 (mod1183)

(p-1=2*-7)

3
= |=-1
((113) )

m=40 (m=n’)

Given: p=113 Initialize: r
a="71 S
n

4
7
3

Iterate (until u; =0, i.e., b; =1):

i bi OI‘d bi — 2ul xi

ol
0|-1(b,=a®) ! 28 (xo=y=a?)
111 (bi+1 = er_ui bl) 20 32 (xi+1 = mzr_ui_lxi)

Thus x=32 (mod113).




Example: x* =103 (mod 641)

(p-1=2"-5)

3
= |=-1
((641) )

m=243 (m=n°’)

Given: p =641 Initialize: r
a=103 S
n

7
5)
3

Iterate (until u; =0, i.e., b; =1):

i bi OI‘d bi - Zu‘ xi

S+l
0| 625 (b, =a®) 2* 463 (xo=y=a?)
1] -1 (bi+1 = er_ui bl) 21 365(xi+1 = mzr_ui_lxi)
211 2" 198

Thus x=198 (mod641).



