Computing square roots mod p

We now have very effective ways to determine *whether* the quadratic congruence $x^2 \equiv a \pmod{p}$, *p* an odd prime, is solvable. What we need to complete this discussion is an effective technique to *compute* a solution if one exists, that is, if $\left(\frac{a}{p}\right) = 1$.

Consequently, for the remainder of this discussion we will assume that a is a quadratic residue mod p.

Now it turns out that finding a solution to $x^2 \equiv a \pmod{p}$ is easy if $p \equiv 3 \pmod{4}$: we write p = 4k + 3, then set $x \equiv a^{k+1} \pmod{p}$. By Euler's Criterion,

$$x^{2} \equiv a^{2k+2} \equiv a^{2k+1} \cdot a \equiv a^{\frac{p-1}{2}} \cdot a \equiv \left(\frac{a}{p}\right) \cdot a \equiv a \pmod{p}$$

so $x \equiv a^{k+1} \pmod{p}$ is a solution to the original quadratic congruence. That is, $a^{k+1} = a^{\frac{p+1}{4}}$ is a square root of $a \mod p$.

Of course, this method fails if $p \equiv 1 \pmod{4}$. But we can further differentiate values of p if instead we work mod 8: if $p \equiv 1 \pmod{4}$, then either $p \equiv 1 \pmod{8}$ or $p \equiv 5 \pmod{8}$.

Consider the latter case, p = 8k + 5, first. By Euler's Criterion, we have that $a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$, so $a^{\frac{p-1}{4}} \equiv \pm 1 \pmod{p}$. If $a^{\frac{p-1}{4}} \equiv 1 \pmod{p}$, then setting $x \equiv a^{k+1} \pmod{p}$ yields a solution since

$$x^{2} \equiv a^{2k+2} \equiv a^{\frac{p+3}{4}} \equiv a^{\frac{p-1}{4}} \cdot a \equiv a \pmod{p}.$$

If instead, $a^{\frac{p-1}{4}} \equiv -1 \pmod{p}$, then $x \equiv 2^{2k+1}a^{k+1} \pmod{p}$ yields a solution since

$$\begin{aligned} x^2 &\equiv 2^{4\,k+2} a^{2k+2} \equiv 2^{\frac{p-1}{2}} a^{\frac{p+3}{4}} \\ &\equiv \left(\frac{2}{p}\right) \cdot a^{\frac{p-1}{4}} \cdot a \equiv -1 \cdot -1 \cdot a \equiv a \pmod{p}. \end{aligned}$$

We're still left with the case $p \equiv 1 \pmod{8}$. Now we could continue this development by producing more and more complicated formulas for computing the square root of *a* mod *p*, depending on the residue class of *p* modulo higher and higher powers of 2, but thankfully this is unnecessary, as it is possible to set forth an algorithm that does this systematically.

Write $p-1 = 2^r s$, with *s* odd. Taking a cue from the methods discussed above, we suggest that $y \equiv a^{\frac{s+1}{2}} \pmod{p}$ might be a good "first try" at a square root for *a*. Observe that $y^2 \equiv a^{s+1} \equiv a^s \cdot a \pmod{p}$. It follows that since both y^2 and *a* are quadratic residues mod *p*, so must a^s be. This reduces our problem to the computation of a square root for $b \equiv a^s \pmod{p}$, for if $z^2 \equiv b \pmod{p}$, then

$$(yz^{-1})^2 \equiv a^{s+1} \cdot a^{-s} \equiv a \pmod{p}$$

and so yz^{-1} is a square root of $a \mod p$.

On the face of it, it doesn't look like we have gained much by transferring the problem of computing a square root y of a to that of computing a square root z of b. But indeed we have, since

$$b^{2^{r-1}} = (a^s)^{2^{r-1}} = a^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right) \equiv 1 \pmod{p} \Rightarrow \operatorname{ord}_p b \mid 2^{r-1}$$

so that

$$\operatorname{ord}_{p} z = 2 \cdot \operatorname{ord}_{p} b | 2^{r} \Rightarrow \operatorname{ord}_{p} z \text{ is a power of } 2 \leq 2^{r}$$

which severely limits the possible values for z.

For those who know some group theory, notice also that the set of nonzero residue classes mod p whose order divides a power of 2 is a *subgroup* of the group of units mod p. That is, if z_1 and z_2 have orders mod p equal to 2^{r_1} and 2^{r_2} , respectively, then the order of z_1z_2 is the larger of 2^{r_1} and 2^{r_2} , hence is also a power of 2; further, the inverse of y_1 has order 2^{r_1} as well (since $(z^{-1})^{2^r} = (z^{2^r})^{-1} = 1$). In fact, this subgroup is called the 2-*Sylow subgroup* of the group of units mod p.

We will denote the set of elements y whose order mod p is a power of 2 as S. (This means that S is the 2-Sylow subgroup of the group of units mod p.) It may seem that we would have to turn to finding a primitive root mod p to get at the structure of the elements in S, but it turns out to be much easier:

Lemma If *n* is any quadratic nonresidue mod *p*, and $m \equiv n^{s} \pmod{p}$, then $S = \{m, m^{2}, m^{3}, ..., m^{2^{r}}\}$.

Proof By EC, $m^{2^{r-1}} = (n^s)^{2^{r-1}} = n^{\frac{p-1}{2}} \equiv -1 \pmod{p}$. But by Fermat's Little Theorem, $m^{2^r} = (n^s)^{2^r} = n^{p-1} \equiv 1 \pmod{p}$, so we must have that $\operatorname{ord}_p m = 2^r$. Thus the first 2^r powers of m are distinct mod p and all lie in S. But as there are $\varphi(2^k)$ elements of order 2^k , and each of these orders is a factor of 2^r , the total number of elements whose order divides 2^r is

$$\sum_{k=0}^{r} \varphi(2^{k}) = \sum_{d|2^{r}} \varphi(d) = 2^{r},$$

hence we have acccounted for all the elements of S. The result follows. //

Returning to our original problem: to solve $x^2 \equiv a \pmod{p}$, we search instead for a square root z of $b \equiv a^s \pmod{p}$, so that with $y \equiv a^{\frac{s+1}{2}} \pmod{p}$, we can then compute $x \equiv yz^{-1} \pmod{p}$, which will be the desired square root of $a \pmod{p}$, which will be the desired square root of $a \pmod{p}$, which will also lie in S and is thus some power of $m = n^s$, where n is some quadratic nonresidue mod p. Indeed, $z \equiv m^k \pmod{p}$ implies that $b \equiv z^2 \equiv m^{2k} \pmod{p}$. That is, b must be some *even* power of m. Halving this even power will locate the desired value of z.

Now one way to proceed with finding z is to simply search through all even powers of m until bappears. This will take no more than r steps. But in fact, there is a procedure that will accomplish this without having to calculate the corresponding powers of m. It is based on the **Lemma** If $\operatorname{ord}_p m = 2^r$ and $\operatorname{ord}_p b = 2^u$ with u < r, then $\operatorname{ord}_p(m^{2^{r-u}}b) = 2^v$ with v < u.

Proof Since $\operatorname{ord}_p m = 2^r$, we have $m^{2^{r-1}} \neq 1 \pmod{p}$ but $(m^{2^{r-1}})^2 \equiv m^{2^r} \equiv 1 \pmod{p}$, whence $m^{2^{r-1}} \equiv -1 \pmod{p}$. Similarly, $b^{2^{u-1}} \equiv -1 \pmod{p}$. Therefore,

$$(m^{2^{r-u}}b)^{2^{u-1}} \equiv m^{2^{r-1}}b^{2^{u-1}} \equiv (-1)(-1) \equiv 1 \pmod{p},$$

which implies that the order of $m^{2^{r-u}}b \mod p$ must divide 2^{u-1} . //

The importance of this observation is that if b = 1, finding z is trivial, for then z = 1. If $b \neq 1$, the lemma allows us to adjust the value of b by multiplication by a perfect square (namely, an even power of m), which replaces b with a new value $b' = m^{2^{r-u}}b$ having smaller order than b. This adjustment makes it no more difficult to find a square root (z gets "adjusted" by a factor of $m^{2^{r-u-1}}$), but as the order of b' is smaller, it means that b' is in some sense "closer" to 1 (whose order is the smallest possible). By repeating this process, we eventually reach a stage where b has been reduced to 1, and the computation is complete. We illustrate with some examples:

Example: $x^2 \equiv 2 \pmod{41}$

Factor $41 - 1 = 2^3 \cdot 5$ (so that r = 3 and s = 5), and put $y = 2^{\frac{5+1}{2}} = 8 \pmod{41}$ and $b = 2^5 = 32 \pmod{41}$. We know that *b* has order dividing 2^{3-1} ; since $b^2 = 32^2 = -1 \pmod{41}$, *b* has order *equal* to 2^2 . Next, take n = 3 as a quadratic nonresidue, noting by QR that

$$\left(\frac{3}{41}\right) = \left(\frac{41}{3}\right) = \left(\frac{-1}{3}\right) = -1$$

and set $m \equiv 3^5 \equiv 38 \pmod{41}$. We know that zsatisfies $z^2 \equiv b \pmod{41}$, but by the lemma, multiplication of this last congruence by $m^{2^{r-u}} \equiv 38^{2^{3-2}} \equiv 9 \pmod{41}$ serves to adjust the value of b to $b' \equiv 9b \equiv 1 \pmod{41}$ and adjusts z by the factor $m^{2^{r-u-1}} \equiv 38^{2^{3-2}} \equiv 38 \pmod{41}$. Also, note that replacing z with $z' \equiv 38z \pmod{41}$ means that $x \equiv yz^{-1} \equiv 8 \cdot 38z'^{-1} \pmod{41}$.

Repeating this procedure, we have that $b' \equiv 1 \pmod{41}$, so a square root is z' = 1, yielding $x \equiv 8 \cdot 38 \cdot 1 \equiv 17 \pmod{41}$ in one iteration.

We can make this computation more amenable to automation by organizing the steps as follows (here, = means congruence mod p):

Given:
$$p = 41$$
 Initialize: $r = 3$ $(p-1=2^r s)$
 $a = 2$
 $s = 5$
 $n = 3$ $(\left(\frac{3}{41}\right) = -1)$
 $m = 38$ $(m = n^s)$

Iterate (until $u_i = 0$, i.e., $b_i = 1$):

i	b_i	$\operatorname{ord}_{41} b_i = 2^{u_i}$	x_i
0	32 $(b_0 = a^s)$	2^2	8 $(x_0 = y = a^{\frac{s+1}{2}})$
1	$1 (b_{i+1} = m^{2^{r-u_i}} b_i)$	2^0	$17(x_{i+1} = m^{2^{r-u_i-1}} x_i)$

The desired solution to the original congruence appears in the lower right cell of the table.

Example: $x^2 = 7 \pmod{113}$ Given: p = 113 Initialize: r = 4 $(p - 1 = 2^4 \cdot 7)$ a = 7 s = 7 n = 3 $(\left(\frac{3}{113}\right) = -1)$ m = 40 $(m = n^s)$

Iterate (until $u_i = 0$, i.e., $b_i = 1$):

i	b_i	$\mathrm{ord} b_i = 2^{u_i}$	x_i
0	$-1 \ (b_0 = a^s)$	2^1	$28 \ (x_0 = y = a^{\frac{s+1}{2}})$
1	$1(b_{i+1} = m^{2^{r-u_i}}b_i)$	2^0	$32 (x_{i+1} = m^{2^{r-u_i-1}} x_i)$

Thus $x = 32 \pmod{113}$.

Example:
$$x^2 \equiv 103 \pmod{641}$$

Given: $p = 641$ Initialize: $r = 7$ $(p-1 = 2^7 \cdot 5)$
 $a = 103$ $s = 5$
 $n = 3$ $(\left(\frac{3}{641}\right) = -1)$
 $m = 243$ $(m = n^s)$

Iterate (until $u_i = 0$, i.e., $b_i = 1$):

i	b_i	$ig \operatorname{ord} b_i = 2^{u_i}$	x_i
0	625 $(b_0 = a^s)$	2^4	$463 \ (x_0 = y = a^{\frac{s+1}{2}})$
1	$-1 (b_{i+1} = m^{2^{r-u_i}} b_i)$	2^1	$365(x_{i+1} = m^{2^{r-u_i-1}} x_i)$
2	1	2^0	198

Thus $x = 198 \pmod{641}$.