Problem 4.12 Prove that $(1-3 x)=\sqrt{5 x-1}$ implies $x=2 / 9$
Proof. Suppose $x$ satisfies $(1-3 x)=\sqrt{5 x-1}$. Squaring both sides yields

$$
\begin{aligned}
5 x-1 & =(1-3 x)^{2} \\
5 x-1 & =1-6 x+9 x^{2} \\
0 & =2-11 x+9 x^{2}
\end{aligned}
$$

Using the quadratic formula gives

$$
x=\frac{11 \pm \sqrt{11^{2}-4 \cdot 2 \cdot 9}}{2 \cdot 9}=\frac{11 \pm 7}{18}=1, \frac{2}{9}
$$

However, the case of $x=1$ must be thrown out since

$$
(1-3 \cdot 1)=-2 \neq 2=\sqrt{5 \cdot 1-1}
$$

Hence $x=\frac{2}{9}$.

