ORAL:

1. (a) Solve $3 x^{5}+4 x^{4}-2 x^{3}+x-7 \equiv 0 \bmod 5$ by testing a finite number of guesses.
(b) Lift your solution(s) to the above to solve $3 x^{5}+4 x^{4}-2 x^{3}+x-7 \equiv 0 \bmod 25$.
(c) Lift your solution(s) to the above to solve $3 x^{5}+4 x^{4}-2 x^{3}+x-7 \equiv 0 \bmod 125$.
(d) Solve $3 x^{5}+4 x^{4}-2 x^{3}+x-7 \equiv 0 \bmod 13$ by testing a finite number of guesses.
(e) Use Chinese Remainder Theorem to solve $3 x^{5}+4 x^{4}-2 x^{3}+x-7 \equiv 0 \bmod 1625$.
2. (a) A solution to $x^{6}+3 x+110 \equiv 0 \bmod 121$ is $x \equiv 44 \bmod 121$. Use Hensel's Lemma to determine if this can be lifted to many, lifted to one, or not lifted to solutions mod 1331.
(b) A solution to $x^{6}+18 x^{3}+26 \equiv 0 \bmod 9$ is $x \equiv 4 \bmod 9$. Use Hensel's Lemma to determine if this can be lifted to many, lifted to one, or not lifted to solutions mod 27.
(c) A solution to $x^{6}+18 x^{3}+26 \equiv 0 \bmod 9$ is $x \equiv 5 \bmod 9$. Use Hensel's Lemma to determine if this can be lifted to many, lifted to one, or not lifted to solutions mod 27.

WRITTEN:

3. Solve

$$
x^{3}-216 \equiv 0 \quad \bmod 5929
$$

4. Prove that if a number n is given in base b by $n=a_{k} a_{k-1} \ldots a_{3} a_{2} a_{1} a_{0}$ then n is divisible by $b-1$ if and only if $a_{k}+a_{k-1}+\cdots+a_{2}+a_{1}+a_{0}$ is divisible by $b-1$. (Note: This generalizes the idea that a base-10 number is divisible by 9 iff the sum of its digits are.)
