ORAL:

1. Determine the base-10 form of the following
(a) 11101001_{2}
(b) 300245_{6}
(c) 14367_{11}
(d) $3 b 7 f 2_{16}$
(e) $m a t h_{36}$
2. Compute the following (without converting to base-10)
(a) $423578_{11}+34289_{11}$
(b) $100010101_{2}-101110_{2}$
(c) $1011_{2} \times 101_{2}$
(d) $45_{20} \times 87_{20}$
3. Convert the following base-10 numbers into the given base
(a) 597 to base 4
(b) 1239487 to base 16
(c) 89 to base 3
(d) 9332 to base 9
4. Convert the following p-adic numbers into rational numbers of the form $\frac{a}{b}$.
(a) $\ldots 2222_{13}=\overline{2}_{13}$
(b) $\ldots 4444_{5}=\overline{4}_{5}$
(c) $\ldots 261261261_{7}=\overline{261}_{7}$
(d) $\ldots 13131342_{5}=\overline{13} 42_{5}$

WRITTEN:

5. Give $\frac{-4}{9}$ as a 7 -adic number. (Hint: Determine $\frac{5}{9}$ through division, then subtract 1)
6. Use the previous problem to solve $9 x \equiv-4 \bmod 7^{4}$.
