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• Classically, interested in problems 
involving only whole numbers. 

• Prime numbers play major roles.

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, …

• One of the oldest areas of mathematics.

Gauss: “Mathematics is the queen 
of sciences and number theory is 
the queen of mathematics.”
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The Most Famous 
Number Theory Problem

• Recall Pythagorean Triples satisfy:

• Question: Are there positive integers satisfying

for          ? (Fermat, 1637).

• Answer: No. (Wiles, 1994).

• A lot of math developed along the way.
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• It’s a really complicated proof.

• A crucial step involved a property of  
Elliptic Curves, fundamental objects in 
geometric number theory.



Modern Number Theory
• Modern number theory comes in a variety of 

flavors: Algebraic, Analytic, Combinatorial, 
Geometric.

• Wiles’s proof used all of these together.

• It’s a really complicated proof.

• A crucial step involved a property of  
Elliptic Curves, fundamental objects in 
geometric number theory.



Modern Number Theory
• Modern number theory comes in a variety of 

flavors: Algebraic, Analytic, Combinatorial, 
Geometric.

• Wiles’s proof used all of these together.

• It’s a really complicated proof.

• A crucial step involved a property of  
Elliptic Curves, fundamental objects in 
geometric number theory.



• Legend has it…
• Two ways to arrange cannonballs:
• In a pyramid: In a square:

• Question: Is there a number of cannonballs 
which can be arranged in both ways?   

• 1 cannonball can. Other solutions?

The Cannonball Problem



• Legend has it…
• Two ways to arrange cannonballs:
• In a pyramid: In a square:

• Question: Is there a number of cannonballs 
which can be arranged in both ways?   

• 1 cannonball can. Other solutions?

The Cannonball Problem



• Legend has it…
• Two ways to arrange cannonballs:
• In a pyramid: In a square:

• Question: Is there a number of cannonballs 
which can be arranged in both ways?   

• 1 cannonball can. Other solutions?

The Cannonball Problem



• Legend has it…
• Two ways to arrange cannonballs:
• In a pyramid: In a square:

• Question: Is there a number of cannonballs 
which can be arranged in both ways?   

• 1 cannonball can. Other solutions?

The Cannonball Problem

?

=



• Legend has it…
• Two ways to arrange cannonballs:
• In a pyramid: In a square:

• Question: Is there a number of cannonballs 
which can be arranged in both ways?   

• One cannonball can. Other solutions?

The Cannonball Problem

?

=



• Legend has it…
• Two ways to arrange cannonballs:
• In a pyramid: In a square:

• Question: Is there a number of cannonballs 
which can be arranged in both ways?   

• One cannonball can. Other solutions?

The Cannonball Problem

?

=



Convert to Math
• Formula for number of cannonballs in a 

pyramid of x levels:



Convert to Math
• Formula for number of cannonballs in a 

pyramid of x levels:

30



Convert to Math
• Formula for number of cannonballs in a 

pyramid of x levels:

30



Convert to Math
• Formula for number of cannonballs in a 

pyramid of x levels:

21

22+
23+

24+30 =



Convert to Math
• Formula for number of cannonballs in a 

pyramid of x levels:
2222 321 x++++ K

21

22+
23+

24+30 =



Convert to Math
• Formula for number of cannonballs in a 

pyramid of x levels:

• Formula for a square with y cannonballs 
on one side:

2222 321 x++++ K

2y



Convert to Math
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pyramid of x levels:

• Formula for a square with y cannonballs 
on one side:

• Want two integers x and y so that:

2222 321 x++++ K
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Question Restated
• Want two integers x and y so that:

• Plan: consider the curve

( )( )

xxxy

xxx
y

xy

6
12

2
13

3
12

2

2222

6
121

21

++=

++
=

+++= K



Question Restated
• Want two integers x and y so that:

• Plan: consider the curve

xxxy 6
12

2
13

3
12 ++=

( )( )

xxxy

xxx
y

xy

6
12

2
13

3
12

2

2222

6
121

21

++=

++
=

+++= K



The Curve                               .xxxy 6
12

2
13

3
12 ++=



The Curve                               .xxxy 6
12

2
13

3
12 ++=



The Curve                               .xxxy 6
12

2
13

3
12 ++=

( ) ( ) ( )
64

12

4
1

6
12

4
1

2
13

4
1

3
1

64
1

−

−−−−

=

++=

y

Suppose:

No Solution.

4
1−=x



The Curve                               .xxxy 6
12

2
13

3
12 ++=

( ) ( ) ( )
64

12

4
1

6
12

4
1

2
13

4
1

3
1

64
1

−

−−−−

=

++=

y

Suppose:

No Solution.

4
1−=x

Symmetry 
about the 
x-axis.



The Curve                               .xxxy 6
12

2
13

3
12 ++=



The Curve                               .xxxy 6
12

2
13

3
12 ++=



The Curve                               .xxxy 6
12

2
13

3
12 ++=



The Curve                               .xxxy 6
12

2
13

3
12 ++=

Properties of the Curve:
1. A line through any two points on the curve 

hits the curve in a third point.

2. If the first two points have rational 
coordinates, so will the third.
Note: Two points with integral coordinates 
do not always give a third point with integral 
coordinates.

• Method: Use these properties to find 
more rational points on the curve. 
Hopefully we’ll find an integral point.
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• Need to solve:

• We already know two solutions, 0 and 1:

so it’s easy to find the third.
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• Need to solve:

• We already know two solutions, 0 and 1:

so it’s easy to find the third.

• We get a new point:          .
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• Need to solve:

• We already know two solutions, 0 and 1:

so it’s easy to find the third.

• We get a new point:          .
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• Need to solve:

• We already know two solutions, 0 and 1:

so it’s easy to find the third.

• We get a new point:          .

• It’s not integral.
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…and Again!
• Take the line through                and (1,1).

• Put this into the curve:

• This gives the point (24,70).
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• A pyramid of height 24 also 
contains 4900 cannonballs.

Are there any more solutions?

Watson (1918): No.
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Beyond Cannonballs
• The curve

is an example of an Elliptic Curve.

• Elliptic curves are special because you can “add” 
two points to get a third.

– When adding a point to itself, use the tangent 
line.

– Need to include one more special point, ∞, that 
lies at the top and bottom of every vertical line.
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Real World Applications
• Cryptography
• Define

Recall: Adding points means drawing lines 
and solving for intersections.
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Real World Applications
• Cryptography
• Define

Recall: Adding points means drawing lines 
and solving for intersections.

• To find            , use the line through       

and          , determine the new intersection 

with the curve and reflect.
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Real World Applications
• Cryptography
• Define

Recall: Adding points means drawing lines 
and solving for intersections.

• To find            , use the line through       

and          , determine the new intersection 

with the curve and reflect.
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• Really Hard Problem:

Given two points on the curve      and     , find 
an integer n such that
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• If n is really large (~200 digits), this is 

computationally infeasible to solve.
• is easy to compute knowing n and    .
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nPQ =
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Real World Applications
• Really Hard Problem:

Given two points on the curve      and     , find 
an integer n such that

• Example:                                         .
• If n is really large (~200 digits), this is 

computationally infeasible to solve.
• If I know n and    , it is easy to compute     .
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nPQ =
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Thank you.

Questions?


