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What is Number Theory?

e Classically, interested in problems
Involving only whole numbers.

 Prime numbers play major roles.
2,3,5,7,11,13,17, 19, 23, 29, 31, 37, ...

* One of the oldest areas of mathematics.

Gauss: “Mathematics Is the queen

Al of sciences and number theory Is
'\ the queen of mathematics.”
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The Most Famous
Number Theory Problem

* Recall Pythagorean Triples satisfy:

a’+b*=c’
a C 3 +4°=5°
52 +12% =137
b 8% +15% =177
9% +40° = 41°

12% + 35 = 377
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The Most Famous
Number Theory Problem

Recall Pythagorean Triples satisfy:
a”+b’=c’

Question: Are there positive integers satisfying
a'+b" =c"

for n3 3? (Fermat, 1637).

Answer: No. (Wiles, 1994).

A lot of math developed along the way.
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Modern Number Theory

« Modern number theory comes in a variety of
flavors: Algebraic, Analytic, Combinatorial,
Geometric.

e Wiles’s proof used all of these together.
 It's a really complicated proof.

* A crucial step involved a property of
Elliptic Curves, fundamental objects in
geometric number theory.
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The Cannonball Problem

Legend has it...
Two ways to arrange cannonballs:
In a pyramid: In a square:

Question: Is there a number of cannonballs
which can be arranged in both ways?

One cannonball can. Other solutions?
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Convert to Math

e Formula for number of cannonballs In a
pyramid of x levels:

1°+2°+3° +... +X°

 Formula for a square with y cannonballs
on one side: 5

y

o \Want two integers x and y so that:

Vo =1°+2°+3°+... + X
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Sum of Squares

o Better formula for 12 4+ 22+ 3% + .. .+ X°
1° =1
1°+2° =5
1°+2°+3° =14
1°+2°+3°+4° =30

124224+  +y2 = X(X+1)(2X+1)
5




Sum of Squares

e Better formulafor 12 +22+3%2 +  + X?

]_2: :%:%

12 +92 =5 = 2(:2(5) :3_69
12+22+32=14=00 -8 g
12 +22+32+42=30=450) =10 ¢
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Question Restated

o \Want two Iintegers x and y so that:
yo=1°+2°+.. . +X°
x(x +1)(2x +1)

0
y? =1 +1x°+1x

y* =

 Plan: consider the curve

2 — 1,3 1 2 1
Y —§X +§X +€X
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The Curve y* =1x°+1x*+1x

3 Suppose: X ==t
=302 +3E) +

2 — -1 :
| y° =% No Solution.




3 2

The Curve y* =1x°+1x*+1x

3 Suppose: X ==t

2= 0l
/| y> =2 No Solution.

——x Symmetry
about the
X-axis.
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The Curve y* =ix’ +1x* +1x

Properties of the Curve:

1. Aline through any two points on the curve
hits the curve In a third point.
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The Curve y* =1x°+1x*+1x

Properties of the Curve:

1. Aline through any two points on the curve
hits the curve In a third point or is vertical.

2. If the first two points have rational
coordinates, so will the third.
Note: Two points with integral coordinates
do not always give a third point with integral
coordinates.

« Method: Use these properties to find
more rational points on the curve.
Hopefully we’ll find an integral point.
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Finding New Points

 Consider the line through (0,0) and (1,1).
y=X
« Curveis:
y? =i +1ix*+1x
 Putthem together:

2 —1v3 L 1v2 L1
X —§X +§X +€X

—1v3 1v2 L1
P O0=5X"-35X +2X
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e Need to solve:
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Finding New Points

Need to solve:

— 1 3 1 <2 1
0=5X"-5X"+:X

We already know two solutions, O and 1:

R

so it's easy to find the third.
We get a new point: (£,2) .

y* =) =4

§C+ICHix=4 () +36) +4)=4 v



Finding New Points

The new point on the line and curve: (%,%)




Finding New Points

Need to solve:

— 1 3 1 <2 1
0=5X"-5X"+:X

We already know two solutions, O and 1:

R

so it's easy to find the third.

We get a new point: (£,2) .

It’s not integral.



Try Again...

('1’0)

(0,0)

(11'1)

(1,1)

('110)

(0,0)

(11'1)

(1,1)




Try Again...

(-1,0) (0,0) (1,-1) (1,1)
(-1,0)
0.0 (%.%)
(1,-1)
(L.1) (%.%)

The point found in our example.




Try Again...

(-1,0) (0,0) (1,-1) (1,1)
(-1,0)
0.0 (5.~ %) (%.%)
(1-1) (%.- %)
L.D) (%.%)

Because of the symmetry about the x-axis.
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(-1,0) (0,0) (1,-1) (1,1)
(-1,0) ?
0.0 > (% 5) (%.%)
(1-1) -%) 2
(LD) (%.%) ?
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(1,00 | 00) | (-1 | (@1)
(-1,0) ?

0.0 VRS AIN YA
(1,-1) (.- ) 2 vertical
(1,1) (3,%) | vertical | 2




Try Again...
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Try Again...

1,00 | 00 | (@-1) | @.1)
(-1,0) > | (- %,0)

00 |(-%0) =2 |Ua-%) 0%)
(1,-1) (.- ) 2 vertical
(1,1) (35,%) | vertical | 2




Try Again...

1,00 | 00 | (@-1) | @.1)
(-1,0) > (- %,0)

00 |(-%0) =2 |Us-%) 0%)
(1,-1) (.- ) 2 vertical
(1,1) (35,%) | vertical | 2
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Try Again...

(-1,0) (0,0) (1,-1) (1,1)
(10 | 2 (- %.0) -2.3)
00 |-%0) 2 [(%-%) (5.3
(1,-1) (.- ) 2 vertical
@y |(-2,2)| (34.%) | vertical | 2




Try Again...

(-1,0) (0,0) (1,-1) (1,1)
(10 | 2 (%0 3-3)(23)
0 | %0) 2 |- %) (5%)
1) (-3-2)(%,-%) = vertical
w0 |(-2.2)| (34.%) | vertical | 2

Because of the symmetry about the x-axis.




Try Again...

(-1,0) (0,0) (1,-1) (1,1)
(10 | 2 (%0 3-3)(23)
0 | %0) 2 |- %) (5%)
a1 |-2-2)(%,-%) = vertical
w0 |(-2.2)| (34.%) | vertical | 2
No new integral points.




Try Again...

(-1,0) (0,0) (1,-1) (1,1)
(10 | 2 (%0 3-3)(23)
00 | %0) 2 |[(Bek) (5.7)
a1 |-2-2)(%,-%) = vertical
w0 |(-2.2)| (34.%) | vertical | 2

Something old, something new...
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..and Again!

» Take the line through (}g,- yz) and (1,1).
y =3X- 2

e Put this into the curve:
(3x- 2)° =

0=

1v2 11
+§x +€x

ooll—\ ool

3 17 w2 4 73
X" - X +&£X-4



..and Again!

» Take the line through (}g,- yz) and (1,1).
y =3X- 2
« Put this into the curve:
(3% - 2) =1 +1x°+1x

lx?’- Ux?+Bx- 4

o= (e 3. 2.



..and Again!

» Take the line through (}g,- yz) and (1,1).
y =3X- 2
« Put this into the curve:
(3x- 2" =53 + 3+ X
O:%x?’- Ux?+Zx- 4
0=(x- $)(x- 1(x- 24)



..and Again!

» Take the line through (}g,- yz) and (1,1).
y =3X- 2
e Putthis into the curve:
(3x- 2)* =X +5 X" +4x
0=1x’-Ux*+Bx-4
0= (- £)(x- - 24)

 This gives the point (24,70).
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Cannonballs Solution
70° =1° + 2% + ...+ 24°

« A 70x70 square of
cannonballs contains 4900

50;

10! cannonballs.
A pyramid of height 24 also
= contains 4900 cannonballs.

204

Are there any more solutions?
10}

Watson (1918): No.

X
5 10 15 20 25
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Beyond Cannonballs

e The curve

2 — 1,3 1 2 1
y =3X X +gX

IS an example of an Elliptic Curve.

 Elliptic curves are special because you can “add”
two points to get a third.

— When adding a point to itself, use the tangent
line.

— Need to include one more special point, ¥, that
lies at the top and bottom of every vertical line.



Addition Table

(-1,0) (0,0) (1,-1) (1,1)
(10 | 2 (%0 3-3)(23)
0 | %0) 2 |- %) (52%)
a1 |-2-2)(%,-%) = vertical
@y |(-2.,2)| (34.%) | vertical | 2




Addition Table

(-1,0) (0,0) (1,-1) (1,1)
(20 | 2 [ 50)3-3) (21
00 |(-%0) =2 |[(%-%) %%
a0 |- 3-8)(s-x) 2 | ¥
wy [(-2.3) (x| ¥ ?

Vertical lines include the point ¥




Tangent Lines Through
(-1,0) and (0,0)

]




Addition Table

(-1,0) (0,0) (1,-1) (1,1)
(10 | ¥ (- %0)(-2-2) (24
00 |(-%0) ¥ |[(%.-%) %%
a0 (3-8 (s-x) 2 | ¥
wy [(-2.3) By ¥ ?

Vertical lines include the point ¥




Tangent Line Through (1,1)

y
_’? _
15 |
7l
0.5
T~ Y
0.5 0 7 ]



Addition Table

(-1,0) (0,0) (1,-1) (1,1)
(10 | ¥ (502323
00 |%0) ¥ (%) 1.5
a0 (3-8 (s-x) 2 | ¥
an |(24) By ¥ (&)




Addition Table

(-1,0) (0,0) (1,-1) (1,1)
o) | ¥ |[(-50)-2-1)(-2.2)
0 |%0) ¥ (B-x) %K
D |-2-3) % %) (%S) ¥
an |(24) By ¥ (&)

Because of the symmetry about the x-axis.




Addition Table

(-1,0) (0,0) (1,-1) (1,1)
o) | ¥ |[(-50)-2-1)(-2.2)
00 |%0) ¥ (%) 1.5
) (3-8 (B %) E.2) ¥
wy [(23)] By ¥ G
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0.5 I 1.5

P +P,




Adding Points the Right Way

Q '(P1+P2)
« 05 1 15

P +P,

=




Addition Table

+ (-1,0) (0,0) (1,-1) (1,1)

(10 | ¥ (%0 (22)(-3-2)

o |
Nl
0|

00 |(-%0) ¥ | (%% (% %)

IR

an [(-2,1)] (04,8) &) «

(1,1) (' I %) (}é" %) ¥ (418’53756)

Reverses the sign on the y-coordinate.
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Why Do We Add Points This Way?

* By defining addition of points using the
reflected point, addition of points behaves
like addition of numbers.

* ldentity: P+Y =P
* Inverses: P+(- P)=¥

* Associativity: (P1 + P2)+ P,=P+ (p2 + |:>3)
« Commutivity: P+PF, =P, +B,



Why Do We Add Points This Way?

By defining addition of points using the
reflected point, addition of points behaves
like addition of numbers.

ldentity: P+¥ =P

Inverses: P+(- P)=¥

Associativity: (P1 + P2)+ P,=R+ (P2 + |:>3)
Commutivity: B +PF, =P, +B,

The rational points form an abelian group.
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Real World Applications
e Cryptography
*Define p-psp+. 4P

J/

ntimes

Recall: Adding points means drawing lines
and solving for intersections.



Addition Table

+ (-1,0) (0,0) (1,-1) (1,1)

(10 | ¥ (%0 (22)/(-3-2)

0 |
oo [

00 |(-%0) ¥ | (%% (% %)

IR

an [(-22)] (5.%) &) «

(1,1) (' I %) (%" %) ¥ (418’53756)

For example: 2(L- 1):(1 '35).

48 ' 576
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e Cryptography
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Recall: Adding points means drawing lines
and solving for intersections.



Real World Applications

e Cryptography

e Define
nP:P+P+m+P

J/

g
ntimes

Recall: Adding points means drawing lines
and solving for intersections.

* To find 3(1,- 1) use the line through (48 ) 532)
and (1,- 1), determine the new intersection

with the curve and reflect.
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Real World Applications

* Really Hard Problem:
Given two points on the curve P and Q, find
an integer n such that

Q=nP
+ Example: (52521, 12556859 ) = n(1,- 1),
e If nis really large (~200 digits), this is
computationally infeasible to solve.
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Really Hard Problem:
Given two points on the curve P and Q, find
an integer n such that

Q=nP

. (1324801 1726556399 | — _
Example' (235200 1197568000 ) N n(l’ 1)

If nis really large (=200 digits), this is
computationally infeasible to solve.
If | know nand P, it is easy to compute Q.




Real World Applications

Really Hard Problem:
Given two points on the curve P and Q, find
an integer n such that

Q=nP

1324801 1726556399

Example: (235200 ' 197568000 ) = 4(11' 1)-
If nis really large (~200 digits), this Is

computationally infeasible to solve.
If | know nand P, it is easy to compute Q.
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Diffle-Hellman Key Exchange

e Alice and Bo

Alice

Secret
number a

Sends aP
Gets bP

Public
Curve eguation

Point P
aP ™

>

bP

T

0 want to establish a secret key.

Bab

Secret
number b

Gets aP
Sends bP



Diffle-Hellman Key Exchange

« Alice and Bob want to establish a secret key.
Alice Public Bob
Secret Curve equation Secret
number a Point P . number b
Sends aP | aP > Gets aP
Gets bP < bP Sends bP
I |
Computes: Computes:

a(bP) = (ab)P b(aP) = (ba)P
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Diffle-Hellman Key Exchange

« Alice and Bob want to establish a secret key.
Alice Public Bob
Secret Curve equation Secret
number a Point P number b

I~
Sends aP | aP > Gets aP
Gets bP < bP Sends bP
I |
Computes: Computes:
a(bP) = (ab)P 2 b(aP) = (ba)P
= (ab)P




Thank youl.

Questions?



