Finding Solutions on the Curve: Number Theory via Geometry

Eric Errthum University of Maryland

-3

3

• Classically, interested in problems involving only whole numbers.

- Classically, interested in problems involving only whole numbers.
- Prime numbers play major roles.
 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, ...

- Classically, interested in problems involving only whole numbers.
- Prime numbers play major roles.
 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, ...
- One of the oldest areas of mathematics.

- Classically, interested in problems involving only whole numbers.
- Prime numbers play major roles.
 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, ...
- One of the oldest areas of mathematics.

Gauss: "Mathematics is the queen of sciences and number theory is the queen of mathematics."

• Recall Pythagorean Triples satisfy:

$$a^2 + b^2 = c^2$$

• Recall Pythagorean Triples satisfy:

$$a^2 + b^2 = c^2$$

• Recall Pythagorean Triples satisfy:

$$3^{2} + 4^{2} = 5^{2}$$

$$5^{2} + 12^{2} = 13^{2}$$

$$8^{2} + 15^{2} = 17^{2}$$

$$9^{2} + 40^{2} = 41^{2}$$

$$12^{2} + 35^{2} = 37^{2}$$

 $a^{2} + b^{2} = c^{2}$

Recall Pythagorean Triples satisfy:

$$a^2 + b^2 = c^2$$

• Question: Are there positive integers satisfying $a^n + b^n = c^n$

for $n \ge 3$? (Fermat, 1637).

Recall Pythagorean Triples satisfy:

$$a^2 + b^2 = c^2$$

• Question: Are there positive integers satisfying $a^n + b^n = c^n$

for $n \ge 3$? (Fermat, 1637).

• Answer: No. (Wiles, 1994).

• Recall Pythagorean Triples satisfy:

$$a^2 + b^2 = c^2$$

• Question: Are there positive integers satisfying $a^n + b^n = c^n$

for $n \ge 3$? (Fermat, 1637).

- Answer: No. (Wiles, 1994).
- A lot of math developed along the way.

Modern Number Theory

 Modern number theory comes in a variety of flavors: Algebraic, Analytic, Combinatorial, Geometric.

Modern Number Theory

- Modern number theory comes in a variety of flavors: Algebraic, Analytic, Combinatorial, Geometric.
- Wiles's proof used all of these together.
- It's a really complicated proof.

Modern Number Theory

- Modern number theory comes in a variety of flavors: Algebraic, Analytic, Combinatorial, Geometric.
- Wiles's proof used all of these together.
- It's a really complicated proof.
- A crucial step involved a property of Elliptic Curves, fundamental objects in geometric number theory.

• Legend has it...

- Legend has it...
- Two ways to arrange cannonballs:
- In a pyramid:

- Legend has it...
- Two ways to arrange cannonballs:
- In a pyramid:

In a square:

- Legend has it...
- Two ways to arrange cannonballs:
- In a pyramid:

In a square:

• Question: Is there a number of cannonballs which can be arranged in both ways?

- Legend has it...
- Two ways to arrange cannonballs:
- In a pyramid:

In a square:

- Question: Is there a number of cannonballs which can be arranged in both ways?
- One cannonball can.

- Legend has it...
- Two ways to arrange cannonballs:
- In a pyramid:

In a square:

- Question: Is there a number of cannonballs which can be arranged in both ways?
- One cannonball can. Other solutions?

• Formula for number of cannonballs in a pyramid of *x* levels:

30

• Formula for number of cannonballs in a pyramid of *x* levels:

$$1^2 + 2^2 + 3^2 + \ldots + x^2$$

 Formula for a square with y cannonballs on one side:

• Formula for number of cannonballs in a pyramid of *x* levels:

$$1^2 + 2^2 + 3^2 + \ldots + x^2$$

• Formula for a square with y cannonballs on one side: y^2

• Want two integers *x* and *y* so that:

$$y^2 = 1^2 + 2^2 + 3^2 + \ldots + x^2$$

• Better formula for $1^2 + 2^2 + 3^2 + ... + x^2$

• Better formula for $1^2 + 2^2 + 3^2 + ... + x^2$

 $1^{2} = 1$ $1^{2} + 2^{2} = 5$ $1^{2} + 2^{2} + 3^{2} = 14$ $1^{2} + 2^{2} + 3^{2} = 4$

• Better formula for $1^2 + 2^2 + 3^2 + ... + x^2$

 $1^2 = 1$ $1^2 + 2^2 = 5$ $1^2 + 2^2 + 3^2 = 14$ $1^2 + 2^2 + 3^2 + 4^2 = 30$ $1^{2} + 2^{2} + \ldots + x^{2} = \frac{x(x+1)(2x+1)}{x}$

• Better formula for $1^2 + 2^2 + 3^2 + ... + x^2$

Question Restated

• Want two integers *x* and *y* so that:

$$y^{2} = \frac{1^{2} + 2^{2} + \dots + x^{2}}{6}$$
$$y^{2} = \frac{x(x+1)(2x+1)}{6}$$
$$y^{2} = \frac{1}{3}x^{3} + \frac{1}{2}x^{2} + \frac{1}{6}x$$

Question Restated

• Want two integers *x* and *y* so that:

$$y^{2} = \frac{1^{2} + 2^{2} + \dots + x^{2}}{6}$$
$$y^{2} = \frac{x(x+1)(2x+1)}{6}$$
$$y^{2} = \frac{1}{3}x^{3} + \frac{1}{2}x^{2} + \frac{1}{6}x$$

• Plan: consider the <u>curve</u>

$$y^2 = \frac{1}{3}x^3 + \frac{1}{2}x^2 + \frac{1}{6}x$$

The Curve $y^2 = \frac{1}{3}x^3 + \frac{1}{2}x^2 + \frac{1}{6}x$

The Curve
$$y^2 = \frac{1}{3}x^3 + \frac{1}{2}x^2 + \frac{1}{6}x$$

Properties of the Curve:

1. A line through any two points on the curve hits the curve in a third point.

Properties of the Curve:

1. A line through any two points on the curve hits the curve in a third point *or is vertical*.

Properties of the Curve:

- 1. A line through any two points on the curve hits the curve in a third point or is vertical.
- 2. If the first two points have rational coordinates, so will the third.

Properties of the Curve:

- 1. A line through any two points on the curve hits the curve in a third point or is vertical.
- If the first two points have rational coordinates, so will the third.
 Note: Two points with integral coordinates do <u>not</u> always give a third point with integral coordinates.

Properties of the Curve:

- 1. A line through any two points on the curve hits the curve in a third point or is vertical.
- If the first two points have rational coordinates, so will the third.
 Note: Two points with integral coordinates do <u>not</u> always give a third point with integral coordinates.
- Method: Use these properties to find more rational points on the curve. Hopefully we'll find an integral point.

$$y = x$$

• Consider the line through (0,0) and (1,1).

$$y = x$$

• Curve is:

$$y^2 = \frac{1}{3}x^3 + \frac{1}{2}x^2 + \frac{1}{6}x$$

• Consider the line through (0,0) and (1,1).

$$y = x$$

• Curve is:

$$y^2 = \frac{1}{3}x^3 + \frac{1}{2}x^2 + \frac{1}{6}x$$

• Put them together:

$$x^{2} = \frac{1}{3}x^{3} + \frac{1}{2}x^{2} + \frac{1}{6}x$$
$$\implies 0 = \frac{1}{3}x^{3} - \frac{1}{2}x^{2} + \frac{1}{6}x$$

• Need to solve:

$$0 = \frac{1}{3}x^3 - \frac{1}{2}x^2 + \frac{1}{6}x$$

• Need to solve:

$$0 = \frac{1}{3}x^3 - \frac{1}{2}x^2 + \frac{1}{6}x$$

• We already know two solutions, 0 and 1:

$$\frac{1}{3}x^3 - \frac{1}{2}x^2 + \frac{1}{6}x = x(x-1)(x-2)$$

so it's easy to find the third.

• Need to solve:

$$0 = \frac{1}{3}x^3 - \frac{1}{2}x^2 + \frac{1}{6}x$$

• We already know two solutions, 0 and 1:

$$\frac{1}{3}x^3 - \frac{1}{2}x^2 + \frac{1}{6}x = x(x-1)(x-\frac{1}{2})$$

so it's easy to find the third.

• Need to solve:

$$0 = \frac{1}{3}x^3 - \frac{1}{2}x^2 + \frac{1}{6}x$$

• We already know two solutions, 0 and 1:

$$\frac{1}{3}x^3 - \frac{1}{2}x^2 + \frac{1}{6}x = x(x-1)(x-\frac{1}{2})$$

so it's easy to find the third.

• We get a new point: $\left(\frac{1}{2}, \frac{1}{2}\right)$.

• Need to solve:

$$0 = \frac{1}{3}x^3 - \frac{1}{2}x^2 + \frac{1}{6}x$$

• We already know two solutions, 0 and 1:

$$\frac{1}{3}x^3 - \frac{1}{2}x^2 + \frac{1}{6}x = x(x-1)(x-\frac{1}{2})$$

so it's easy to find the third.

• We get a new point: $\left(\frac{1}{2}, \frac{1}{2}\right)$.

$$y^2 = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$$

 $\frac{1}{3}x^3 + \frac{1}{2}x^2 + \frac{1}{6}x = \frac{1}{3}\left(\frac{1}{2}\right)^3 + \frac{1}{2}\left(\frac{1}{2}\right)^2 + \frac{1}{6}\left(\frac{1}{2}\right) = \frac{1}{4} \checkmark$

• The new point on the line and curve: $\left(\frac{1}{2}, \frac{1}{2}\right)$

• Need to solve:

$$0 = \frac{1}{3}x^3 - \frac{1}{2}x^2 + \frac{1}{6}x$$

• We already know two solutions, 0 and 1:

$$\frac{1}{3}x^3 - \frac{1}{2}x^2 + \frac{1}{6}x = x(x-1)(x-\frac{1}{2})$$

so it's easy to find the third.

- We get a new point: $\left(\frac{1}{2}, \frac{1}{2}\right)$.
- It's not integral.

Try Again...

	(-1,0)	(0,0)	(1,-1)	(1,1)
(-1,0)				
(0,0)				
(1,-1)				
(1,1)				

Try Again...

	(-1,0)	(0,0)	(1,-1)	(1,1)
(-1,0)				
(0,0)				$(\frac{1}{2}, \frac{1}{2})$
(1,-1)				
(1,1)		$(\frac{1}{2}, \frac{1}{2})$		

The point found in our example.

Try Again...

	(-1,0)	(0,0)	(1,-1)	(1,1)
(-1,0)				
(0,0)			$(\frac{1}{2}, -\frac{1}{2})$	$(\frac{1}{2}, \frac{1}{2})$
(1,-1)		$(\frac{1}{2}, -\frac{1}{2})$		
(1,1)		$\left(\frac{1}{2},\frac{1}{2}\right)$		

Because of the symmetry about the *x*-axis.

Try Again...

	(-1,0)	(0,0)	(1,-1)	(1,1)
(-1,0)	?			
(0,0)		?	$(\frac{1}{2}, -\frac{1}{2})$	$\left(\frac{1}{2},\frac{1}{2}\right)$
(1,-1)		$(\frac{1}{2}, -\frac{1}{2})$?	
(1,1)		$(\frac{1}{2}, \frac{1}{2})$?

Try Again...

	(-1,0)	(0,0)	(1,-1)	(1,1)
(-1,0)	?			
(0,0)		?	$(\frac{1}{2}, -\frac{1}{2})$	$(\frac{1}{2}, \frac{1}{2})$
(1,-1)		$(\frac{1}{2}, -\frac{1}{2})$?	vertical
(1,1)		$\left(\frac{1}{2},\frac{1}{2}\right)$	vertical	?

Try Again...

	(-1,0)	(0,0)	(1,-1)	(1,1)
(-1,0)	?			
(0,0)		?	$(\frac{1}{2}, -\frac{1}{2})$	$\left(\frac{1}{2},\frac{1}{2}\right)$
(1,-1)		$(\frac{1}{2}, -\frac{1}{2})$?	vertical
(1,1)		$\left(\frac{1}{2},\frac{1}{2}\right)$	vertical	?

Try Again...

Try Again...

	(-1,0)	(0,0)	(1,-1)	(1,1)
(-1,0)	?	$(-\frac{1}{2},0)$		
(0,0)	$(-\frac{1}{2},0)$?	$(\frac{1}{2}, -\frac{1}{2})$	$\left(\frac{1}{2},\frac{1}{2}\right)$
(1,-1)		$(\frac{1}{2}, -\frac{1}{2})$?	vertical
(1,1)		$\left(\frac{1}{2},\frac{1}{2}\right)$	vertical	?

Try Again...

	(-1,0)	(0,0)	(1,-1)	(1,1)
(-1,0)	?	$(-\frac{1}{2},0)$		
(0,0)	$(-\frac{1}{2},0)$?	$(\frac{1}{2}, -\frac{1}{2})$	$\left(\frac{1}{2},\frac{1}{2}\right)$
(1,-1)		$(\frac{1}{2}, -\frac{1}{2})$?	vertical
(1,1)		$\left(\frac{1}{2},\frac{1}{2}\right)$	vertical	?
Try Again...

Try Again...

	(-1,0)	(0,0)	(1,-1)	(1,1)
(-1,0)	?	$(-\frac{1}{2},0)$		$\left(-\frac{3}{4},\frac{1}{8}\right)$
(0,0)	$(-\frac{1}{2},0)$?	$(\frac{1}{2}, -\frac{1}{2})$	$\left(\frac{1}{2},\frac{1}{2}\right)$
(1,-1)		$(\frac{1}{2}, -\frac{1}{2})$?	vertical
(1,1)	$\left(-\frac{3}{4},\frac{1}{8}\right)$	$\left(\frac{1}{2},\frac{1}{2}\right)$	vertical	?

Try Again...

	(-1,0)	(0,0)	(1,-1)	(1,1)
(-1,0)	?	$(-\frac{1}{2},0)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$\left(-\frac{3}{4},\frac{1}{8}\right)$
(0,0)	$(-\frac{1}{2},0)$?	$(\frac{1}{2}, -\frac{1}{2})$	$(\frac{1}{2}, \frac{1}{2})$
(1,-1)	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$(\frac{1}{2}, -\frac{1}{2})$?	vertical
(1,1)	$\left(-\frac{3}{4},\frac{1}{8}\right)$	$\left(\frac{1}{2},\frac{1}{2}\right)$	vertical	?

Because of the symmetry about the *x*-axis.

Try Again...

	(-1,0)	(0,0)	(1,-1)	(1,1)
(-1,0)	?	$(-\frac{1}{2},0)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$\left(-\frac{3}{4},\frac{1}{8}\right)$
(0,0)	$(-\frac{1}{2},0)$?	$(\frac{1}{2}, -\frac{1}{2})$	$\left(\frac{1}{2},\frac{1}{2}\right)$
(1,-1)	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$(\frac{1}{2}, -\frac{1}{2})$?	vertical
(1,1)	$\left(-\frac{3}{4},\frac{1}{8}\right)$	$\left(\frac{1}{2},\frac{1}{2}\right)$	vertical	?

No new integral points.

Try Again...

	(-1,0)	(0,0)	(1,-1)	(1,1)
(-1,0)	?	$(-\frac{1}{2},0)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$\left(-\frac{3}{4},\frac{1}{8}\right)$
(0,0)	$(-\frac{1}{2},0)$?	$(\frac{1}{2}, -\frac{1}{2})$	$(\frac{1}{2}, \frac{1}{2})$
(1,-1)	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$(\frac{1}{2}, -\frac{1}{2})$?	vertical
(1,1)	$\left(-\frac{3}{4},\frac{1}{8}\right)$	$\left(\frac{1}{2},\frac{1}{2}\right)$	vertical	?

Something old, something new...

• Take the line through $(\frac{1}{2}, -\frac{1}{2})$ and (1, 1).

$$y = 3x - 2$$

• Take the line through $\left(\frac{1}{2}, -\frac{1}{2}\right)$ and (1,1).

$$y = 3x - 2$$

• Put this into the curve:

$$(3x-2)^2 = \frac{1}{3}x^3 + \frac{1}{2}x^2 + \frac{1}{6}x$$
$$0 = \frac{1}{3}x^3 - \frac{17}{2}x^2 + \frac{73}{6}x - 4$$

• Take the line through $(\frac{1}{2}, -\frac{1}{2})$ and (1, 1).

$$y = 3x - 2$$

• Put this into the curve:

$$(3x-2)^{2} = \frac{1}{3}x^{3} + \frac{1}{2}x^{2} + \frac{1}{6}x$$
$$0 = \frac{1}{3}x^{3} - \frac{17}{2}x^{2} + \frac{73}{6}x - 4$$
$$0 = (x - \frac{1}{2})(x - 1)(x - ?)$$

• Take the line through $(\frac{1}{2}, -\frac{1}{2})$ and (1, 1).

$$y = 3x - 2$$

• Put this into the curve:

$$(3x-2)^{2} = \frac{1}{3}x^{3} + \frac{1}{2}x^{2} + \frac{1}{6}x$$
$$0 = \frac{1}{3}x^{3} - \frac{17}{2}x^{2} + \frac{73}{6}x - 4$$
$$0 = (x - \frac{1}{2})(x - 1)(x - 24)$$

• Take the line through $(\frac{1}{2}, -\frac{1}{2})$ and (1, 1).

$$y = 3x - 2$$

• Put this into the curve:

$$(3x-2)^{2} = \frac{1}{3}x^{3} + \frac{1}{2}x^{2} + \frac{1}{6}x$$
$$0 = \frac{1}{3}x^{3} - \frac{17}{2}x^{2} + \frac{73}{6}x - 4$$
$$0 = (x - \frac{1}{2})(x - 1)(x - 24)$$

This gives the point (24,70).

- A 70x70 square of cannonballs contains 4900 cannonballs.
- A pyramid of height 24 also contains 4900 cannonballs.

- A 70x70 square of cannonballs contains 4900 cannonballs.
- A pyramid of height 24 also contains 4900 cannonballs.

Are there any more solutions?

- A 70x70 square of cannonballs contains 4900 cannonballs.
- A pyramid of height 24 also contains 4900 cannonballs.

Are there any more solutions?

Watson (1918): No.

• The curve

$$y^2 = \frac{1}{3}x^3 + \frac{1}{2}x^2 + \frac{1}{6}x$$

is an example of an Elliptic Curve.

The curve

$$y^2 = \frac{1}{3}x^3 + \frac{1}{2}x^2 + \frac{1}{6}x$$

is an example of an Elliptic Curve.

• Elliptic curves are special because you can "add" two points to get a third.

The curve

$$y^2 = \frac{1}{3}x^3 + \frac{1}{2}x^2 + \frac{1}{6}x$$

is an example of an Elliptic Curve.

- Elliptic curves are special because you can "add" two points to get a third.
 - When adding a point to itself, use the tangent line.

The curve

$$y^2 = \frac{1}{3}x^3 + \frac{1}{2}x^2 + \frac{1}{6}x$$

is an example of an Elliptic Curve.

- Elliptic curves are special because you can "add" two points to get a third.
 - When adding a point to itself, use the tangent line.
 - Need to include one more special point, \mathbf{Y} , that lies at the top and bottom of every vertical line.

	(-1,0)	(0,0)	(1,-1)	(1,1)
(-1,0)	?	(-1/2,0)	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$\left(-\frac{3}{4},\frac{1}{8}\right)$
(0,0)	$(-\frac{1}{2},0)$?	$(\frac{1}{2}, -\frac{1}{2})$	$\left(\frac{1}{2},\frac{1}{2}\right)$
(1,-1)	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$(\frac{1}{2}, -\frac{1}{2})$?	vertical
(1,1)	$\left(-\frac{3}{4},\frac{1}{8}\right)$	$(\frac{1}{2}, \frac{1}{2})$	vertical	?

	(-1,0)	(0,0)	(1,-1)	(1,1)
(-1,0)	?	$(-\frac{1}{2},0)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$\left(-\frac{3}{4},\frac{1}{8}\right)$
(0,0)	$(-\frac{1}{2},0)$?	$(\frac{1}{2}, -\frac{1}{2})$	$\left(\frac{1}{2},\frac{1}{2}\right)$
(1,-1)	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$(\frac{1}{2}, -\frac{1}{2})$?	¥
(1,1)	$\left(-\frac{3}{4},\frac{1}{8}\right)$	$\left(\frac{1}{2},\frac{1}{2}\right)$	¥	?

Vertical lines include the point \mathbf{Y}

Tangent Lines Through (-1,0) and (0,0)

	(-1,0)	(0,0)	(1,-1)	(1,1)
(-1,0)	¥	(-1/2,0)	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$\left(-\frac{3}{4},\frac{1}{8}\right)$
(0,0)	$(-\frac{1}{2},0)$	¥	$(\frac{1}{2}, -\frac{1}{2})$	$\left(\frac{1}{2},\frac{1}{2}\right)$
(1,-1)	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$(\frac{1}{2}, -\frac{1}{2})$?	¥
(1,1)	$\left(-\frac{3}{4},\frac{1}{8}\right)$	$(\frac{1}{2}, \frac{1}{2})$	¥	?

Vertical lines include the point \mathbf{Y}

Tangent Line Through (1,1)

	(-1,0)	(0,0)	(1,-1)	(1,1)
(-1,0)	¥	(-1/2,0)	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$\left(-\frac{3}{4},\frac{1}{8}\right)$
(0,0)	$(-\frac{1}{2},0)$	¥	$(\frac{1}{2}, -\frac{1}{2})$	$\left(\frac{1}{2},\frac{1}{2}\right)$
(1,-1)	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$(\frac{1}{2}, -\frac{1}{2})$?	¥
(1,1)	$\left(-\frac{3}{4},\frac{1}{8}\right)$	$(\frac{1}{2}, \frac{1}{2})$	¥	$\left(\frac{1}{48}, \frac{-35}{576}\right)$

	(-1,0)	(0,0)	(1,-1)	(1,1)
(-1,0)	¥	(-1/2,0)	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$\left(-\frac{3}{4},\frac{1}{8}\right)$
(0,0)	$(-\frac{1}{2},0)$	¥	$(\frac{1}{2}, -\frac{1}{2})$	$\left(\frac{1}{2},\frac{1}{2}\right)$
(1,-1)	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$(\frac{1}{2}, -\frac{1}{2})$	$\left(\frac{1}{48},\frac{35}{576}\right)$	¥
(1,1)	$\left(-\frac{3}{4},\frac{1}{8}\right)$	$\left(\frac{1}{2},\frac{1}{2}\right)$	¥	$\left(\frac{1}{48}, \frac{-35}{576}\right)$

Because of the symmetry about the *x*-axis.

	(-1,0)	(0,0)	(1,-1)	(1,1)
(-1,0)	¥	(-1/2,0)	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$\left(-\frac{3}{4},\frac{1}{8}\right)$
(0,0)	$(-\frac{1}{2},0)$	¥	$(\frac{1}{2}, -\frac{1}{2})$	$(\frac{1}{2}, \frac{1}{2})$
(1,-1)	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$(\frac{1}{2}, -\frac{1}{2})$	$\left(\frac{1}{48},\frac{35}{576}\right)$	¥
(1,1)	$\left(-\frac{3}{4},\frac{1}{8}\right)$	$\left(\frac{1}{2},\frac{1}{2}\right)$	¥	$\left(\frac{1}{48}, \frac{-35}{576}\right)$

Adding Points the Right Way

Adding Points the Right Way

Adding Points the Right Way

+	(-1,0)	(0,0)	(1,-1)	(1,1)
(-1,0)	¥	(-1/2,0)	$\left(-\frac{3}{4},\frac{1}{8}\right)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$
(0,0)	$(-\frac{1}{2},0)$	¥	$\left(\frac{1}{2},\frac{1}{2}\right)$	$(\frac{1}{2}, -\frac{1}{2})$
(1,-1)	$\left(-\frac{3}{4},\frac{1}{8}\right)$	$\left(\frac{1}{2},\frac{1}{2}\right)$	$\left(\frac{1}{48}, \frac{-35}{576}\right)$	¥
(1,1)	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$(\frac{1}{2}, -\frac{1}{2})$	¥	$\left(\frac{1}{48},\frac{35}{576}\right)$

Reverses the sign on the *y*-coordinate.

Why Do We Add Points This Way?

 By defining addition of points using the reflected point, addition of points behaves like addition of numbers.

Why Do We Add Points This Way?

- By defining addition of points using the reflected point, addition of points behaves like addition of numbers.
- Identity: $P + \infty = P$

Why Do We Add Points This Way?

- By defining addition of points using the reflected point, addition of points behaves like addition of numbers.
- Identity: $P + \infty = P$
- Inverses:

$$P + (-P) = \infty$$

Why Do We Add Points This Way?

- By defining addition of points using the reflected point, addition of points behaves like addition of numbers.
- Identity: $P + \infty = P$
- Inverses: $P + (-P) = \infty$
- Associativity: $(P_1 + P_2) + P_3 = P_1 + (P_2 + P_3)$

Why Do We Add Points This Way?

- By defining addition of points using the reflected point, addition of points behaves like addition of numbers.
- Identity: $P + \infty = P$
- Inverses: $P + (-P) = \infty$
- Associativity: $(P_1 + P_2) + P_3 = P_1 + (P_2 + P_3)$
- Commutivity: $P_1 + P_2 = P_2 + P_1$

Why Do We Add Points This Way?

- By defining addition of points using the reflected point, addition of points behaves like addition of numbers.
- Identity: $P + \infty = P$
- Inverses: $P + (-P) = \infty$
- Associativity: $(P_1 + P_2) + P_3 = P_1 + (P_2 + P_3)$
- Commutivity: $P_1 + P_2 = P_2 + P_1$
- The rational points form an abelian group.

• Cryptography

- Cryptography
- Define

- Cryptography
- Define

$$nP = \underbrace{P + P + \ldots + P}_{n \text{ times}}$$

Recall: Adding points means drawing lines and solving for intersections.

Addition Table

+	(-1,0)	(0,0)	(1,-1)	(1,1)
(-1,0)	¥	(-1/2,0)	$\left(-\frac{3}{4},\frac{1}{8}\right)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$
(0,0)	$(-\frac{1}{2},0)$	¥	$(\frac{1}{2}, \frac{1}{2})$	$(\frac{1}{2}, -\frac{1}{2})$
(1,-1)	$\left(-\frac{3}{4},\frac{1}{8}\right)$	$\left(\frac{1}{2},\frac{1}{2}\right)$	$\left(\frac{1}{48}, \frac{-35}{576}\right)$	¥
(1,1)	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$(\frac{1}{2}, -\frac{1}{2})$	¥	$\left(\frac{1}{48},\frac{35}{576}\right)$

For example: $2(1,-1) = \left(\frac{1}{48}, \frac{-35}{576}\right)$.

- Cryptography
- Define

$$nP = \underbrace{P + P + \ldots + P}_{n \text{ times}}$$

Recall: Adding points means drawing lines and solving for intersections.

- Cryptography
- Define

$$nP = \underbrace{P + P + \ldots + P}_{n \text{ times}}$$

Recall: Adding points means drawing lines and solving for intersections.

• To find 3(1,-1), use the line through $\left(\frac{1}{48}, \frac{-35}{576}\right)$ and (1,-1), determine the new intersection with the curve and reflect.

- Really Hard Problem:
 - Given two points on the curve P and Q, find an integer n such that

$$Q = nP$$

• Really Hard Problem:

Given two points on the curve P and Q, find an integer n such that

$$Q = nP$$

• Example: $\left(\frac{1324801}{235200}, \frac{1726556399}{197568000}\right) = n(1, -1).$

• Really Hard Problem:

Given two points on the curve P and Q, find an integer n such that

$$Q = nP$$

- Example: $\left(\frac{1324801}{235200}, \frac{1726556399}{197568000}\right) = n(1, -1).$
- If *n* is really large (~200 digits), this is computationally infeasible to solve.

• Really Hard Problem:

Given two points on the curve P and Q, find an integer n such that

$$Q = nP$$

- Example: $\left(\frac{1324801}{235200}, \frac{1726556399}{197568000}\right) = n(1, -1).$
- If *n* is really large (~200 digits), this is computationally infeasible to solve.
- If I know n and P, it is easy to compute Q.

• Really Hard Problem:

Given two points on the curve P and Q, find an integer n such that

$$Q = nP$$

- Example: $\left(\frac{1324801}{235200}, \frac{1726556399}{197568000}\right) = 4(1, -1)$.
- If *n* is really large (~200 digits), this is computationally infeasible to solve.
- If I know n and P, it is easy to compute Q.

• Alice and Bob want to establish a secret key.

• Alice and Bob want to establish a secret key.

• Alice and Bob want to establish a secret key.

<u>Alice</u> Secret number *a*

Public Curve equation Point P Bob Secret number b

• Alice and Bob want to establish a secret key.

Alice and Bob want to establish a secret key.

Alice Secret number a Sends *aP* Gets *hP*

Bob

Secret

• Alice and Bob want to establish a secret key.

Alice and Bob want to establish a secret key.

Alice and Bob want to establish a secret key.

Thank you.

Questions?