Finding Solutions on the Curve: Number Theory via Geometry

What is Number Theory?

What is Number Theory?

- Classically, interested in problems involving only whole numbers.

What is Number Theory?

- Classically, interested in problems involving only whole numbers.
- Prime numbers play major roles.
$2,3,5,7,11,13,17,19,23,29,31,37, \ldots$

What is Number Theory?

- Classically, interested in problems involving only whole numbers.
- Prime numbers play major roles.
$2,3,5,7,11,13,17,19,23,29,31,37, \ldots$
- One of the oldest areas of mathematics.

What is Number Theory?

- Classically, interested in problems involving only whole numbers.
- Prime numbers play major roles.
$2,3,5,7,11,13,17,19,23,29,31,37, \ldots$
- One of the oldest areas of mathematics.

Gauss: "Mathematics is the queen of sciences and number theory is the queen of mathematics."

The Most Famous Number Theory Problem

- Recall Pythagorean Triples satisfy:

$$
a^{2}+b^{2}=c^{2}
$$

The Most Famous Number Theory Problem

- Recall Pythagorean Triples satisfy:

$$
a^{2}+b^{2}=c^{2}
$$

The Most Famous Number Theory Problem

- Recall Pythagorean Triples satisfy:

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
3^{2}+4^{2} & =5^{2} \\
5^{2}+12^{2} & =13^{2} \\
8^{2}+15^{2} & =17^{2} \\
9^{2}+40^{2} & =41^{2} \\
12^{2}+35^{2} & =37^{2}
\end{aligned}
$$

$$
b
$$

The Most Famous Number Theory Problem

- Recall Pythagorean Triples satisfy:

$$
a^{2}+b^{2}=c^{2}
$$

- Question: Are there positive integers satisfying

$$
a^{n}+b^{n}=c^{n}
$$

for $n \geq 3$? (Fermat, 1637).

The Most Famous Number Theory Problem

- Recall Pythagorean Triples satisfy:

$$
a^{2}+b^{2}=c^{2}
$$

- Question: Are there positive integers satisfying

$$
a^{n}+b^{n}=c^{n}
$$

for $n \geq 3$? (Fermat, 1637).

- Answer: No. (Wiles, 1994).

The Most Famous Number Theory Problem

- Recall Pythagorean Triples satisfy:

$$
a^{2}+b^{2}=c^{2}
$$

- Question: Are there positive integers satisfying

$$
a^{n}+b^{n}=c^{n}
$$

for $n \geq 3$? (Fermat, 1637).

- Answer: No. (Wiles, 1994).
- A lot of math developed along the way.

Modern Number Theory

- Modern number theory comes in a variety of flavors: Algebraic, Analytic, Combinatorial, Geometric.

Modern Number Theory

- Modern number theory comes in a variety of flavors: Algebraic, Analytic, Combinatorial, Geometric.
- Wiles's proof used all of these together.
- It's a really complicated proof.

Modern Number Theory

- Modern number theory comes in a variety of flavors: Algebraic, Analytic, Combinatorial, Geometric.
- Wiles's proof used all of these together.
- It's a really complicated proof.
- A crucial step involved a property of Elliptic Curves, fundamental objects in geometric number theory.

The Cannonball Problem

- Legend has it...

The Cannonball Problem

- Legend has it...
- Two ways to arrange cannonballs:
- In a pyramid:

The Cannonball Problem

- Legend has it...
- Two ways to arrange cannonballs:
- In a pyramid:

In a square:

The Cannonball Problem

- Legend has it...
- Two ways to arrange cannonballs:
- In a pyramid:

In a square:

- Question: Is there a number of cannonballs which can be arranged in both ways?

The Cannonball Problem

- Legend has it...
- Two ways to arrange cannonballs:
- In a pyramid:

In a square:

Question: Is there a number of cannonballs which can be arranged in both ways?

- One cannonball can.

The Cannonball Problem

- Legend has it...
- Two ways to arrange cannonballs:
- In a pyramid:

In a square:

- Question: Is there a number of cannonballs which can be arranged in both ways?
- One cannonball can. Other solutions?

Convert to Math

- Formula for number of cannonballs in a pyramid of x levels:

Convert to Math

- Formula for number of cannonballs in a pyramid of x levels:

30

Convert to Math

- Formula for number of cannonballs in a pyramid of x levels:

Convert to Math

- Formula for number of cannonballs in a pyramid of x levels:

Convert to Math

- Formula for number of cannonballs in a pyramid of x levels:

$$
1^{2}+2^{2}+3^{2}+\ldots+x^{2}
$$

Convert to Math

- Formula for number of cannonballs in a pyramid of x levels:

$$
1^{2}+2^{2}+3^{2}+\ldots+x^{2}
$$

- Formula for a square with y cannonballs on one side:

$$
y^{2}
$$

Convert to Math

- Formula for number of cannonballs in a pyramid of x levels:

$$
1^{2}+2^{2}+3^{2}+\ldots+x^{2}
$$

- Formula for a square with y cannonballs on one side:

$$
y^{2}
$$

- Want two integers x and y so that:

$$
y^{2}=1^{2}+2^{2}+3^{2}+\ldots+x^{2}
$$

Sum of Squares

- Better formula for $1^{2}+2^{2}+3^{2}+\ldots+x^{2}$

Sum of Squares

- Better formula for $1^{2}+2^{2}+3^{2}+\ldots+x^{2}$

$$
\begin{aligned}
1^{2} & =1 \\
1^{2}+2^{2} & =5 \\
1^{2}+2^{2}+3^{2} & =14 \\
1^{2}+2^{2}+3^{2}+4^{2} & =30
\end{aligned}
$$

Sum of Squares

- Better formula for $1^{2}+2^{2}+3^{2}+\ldots+x^{2}$

$$
\begin{aligned}
1^{2} & =1 \\
1^{2}+2^{2} & =5 \\
1^{2}+2^{2}+3^{2} & =14 \\
1^{2}+2^{2}+3^{2}+4^{2} & =30 \\
& \vdots \\
1^{2}+2^{2}+\ldots+x^{2} & =\frac{x(x+1)(2 x+1)}{6}
\end{aligned}
$$

Sum of Squares

- Better formula for $1^{2}+2^{2}+3^{2}+\ldots+x^{2}$

$$
\begin{aligned}
1^{2} & =1=\frac{1(2)(3)}{6}=\frac{6}{6} \\
1^{2}+2^{2} & =5=\frac{2(3)(5)}{6}=\frac{30}{6} \\
1^{2}+2^{2}+3^{2} & =14=\frac{3(4)(7)}{6}=\frac{84}{6} \\
1^{2}+2^{2}+3^{2}+4^{2} & =30=\frac{4(5)(9)}{6}=\frac{180}{6} \\
& \vdots \\
1^{2}+2^{2}+\ldots+x^{2} & =\frac{x(x+1)(2 x+1)}{6}
\end{aligned}
$$

Question Restated

- Want two integers x and y so that:

$$
\begin{aligned}
& y^{2}=1^{2}+2^{2}+\ldots+x^{2} \\
& y^{2}=\frac{x(x+1)(2 x+1)}{6} \\
& y^{2}=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{6} x
\end{aligned}
$$

Question Restated

- Want two integers x and y so that:

$$
\begin{aligned}
& y^{2}=1^{2}+2^{2}+\ldots+x^{2} \\
& y^{2}=\frac{x(x+1)(2 x+1)}{6} \\
& y^{2}=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{6} x
\end{aligned}
$$

- Plan: consider the curve

$$
y^{2}=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{6} x
$$

The Curve $y^{2}=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{6} x$

The Curve $y^{2}=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{6} x$

The Curve $y^{2}=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{6} x$ Suppose: $x=\frac{-1}{4}$
$\frac{-1}{64}=\frac{1}{3}\left(\frac{-1}{4}\right)^{3}+\frac{1}{2}\left(\frac{-1}{4}\right)^{2}+\frac{1}{6}\left(\frac{-1}{4}\right)$
$y^{2}=\frac{-1}{64}$ No Solution.

The Curve $y^{2}=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{6} x$

The Curve $y^{2}=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{6} x$

Properties of the Curve:

1. A line through any two points on the curve hits the curve in a third point.

The Curve $y^{2}=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{6} x$

$$
\text { The Curve } y^{2}=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{6} x
$$

Properties of the Curve:

1. A line through any two points on the curve hits the curve in a third point or is vertical.

The Curve $y^{2}=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{6} x$

Properties of the Curve:

1. A line through any two points on the curve hits the curve in a third point or is vertical.
2. If the first two points have rational coordinates, so will the third.

The Curve $y^{2}=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{6} x$

Properties of the Curve:

1. A line through any two points on the curve hits the curve in a third point or is vertical.
2. If the first two points have rational coordinates, so will the third. Note: Two points with integral coordinates do not always give a third point with integral coordinates.

$$
\text { The Curve } y^{2}=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{6} x
$$

Properties of the Curve:

1. A line through any two points on the curve hits the curve in a third point or is vertical.
2. If the first two points have rational coordinates, so will the third. Note: Two points with integral coordinates do not always give a third point with integral coordinates.

- Method: Use these properties to find more rational points on the curve. Hopefully we'll find an integral point.

Finding New Points

Consider the line through $(0,0)$ and $(1,1)$.

Finding New Points

Consider the line through $(0,0)$ and $(1,1)$.

Finding New Points

Consider the line through $(0,0)$ and $(1,1)$.

Finding New Points

- Consider the line through $(0,0)$ and $(1,1)$.

$$
y=x
$$

Finding New Points

Consider the line through $(0,0)$ and $(1,1)$.

$$
y=x
$$

- Curve is:

$$
y^{2}=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{6} x
$$

Finding New Points

Consider the line through $(0,0)$ and $(1,1)$.

$$
y=x
$$

- Curve is:

$$
y^{2}=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{6} x
$$

- Put them together:

$$
\begin{aligned}
x^{2} & =\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{6} x \\
\Rightarrow 0 & =\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+\frac{1}{6} x
\end{aligned}
$$

Finding New Points

Need to solve:

$$
0=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+\frac{1}{6} x
$$

Finding New Points

Need to solve:

$$
0=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+\frac{1}{6} x
$$

We already know two solutions, 0 and 1:

$$
\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+\frac{1}{6} x=x(x-1)(x-?)
$$

so it's easy to find the third.

Finding New Points

Need to solve:

$$
0=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+\frac{1}{6} x
$$

We already know two solutions, 0 and 1:

$$
\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+\frac{1}{6} x=x(x-1)\left(x-\frac{1}{2}\right)
$$

so it's easy to find the third.

Finding New Points

Need to solve:

$$
0=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+\frac{1}{6} x
$$

We already know two solutions, 0 and 1:

$$
\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+\frac{1}{6} x=x(x-1)\left(x-\frac{1}{2}\right)
$$

so it's easy to find the third.

- We get a new point: $\left(\frac{1}{2}, \frac{1}{2}\right)$.

Finding New Points

- Need to solve:

$$
0=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+\frac{1}{6} x
$$

- We already know two solutions, 0 and 1:

$$
\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+\frac{1}{6} x=x(x-1)\left(x-\frac{1}{2}\right)
$$

so it's easy to find the third.

- We get a new point: $\left(\frac{1}{2}, \frac{1}{2}\right)$.

$$
\begin{aligned}
y^{2} & =\left(\frac{1}{2}\right)^{2}=\frac{1}{4} \\
\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{6} x & =\frac{1}{3}\left(\frac{1}{2}\right)^{3}+\frac{1}{2}\left(\frac{1}{2}\right)^{2}+\frac{1}{6}\left(\frac{1}{2}\right)=\frac{1}{4}
\end{aligned}
$$

Finding New Points

- The new point on the line and curve: $\left(\frac{1}{2}, \frac{1}{2}\right)$

Finding New Points

- Need to solve:

$$
0=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+\frac{1}{6} x
$$

- We already know two solutions, 0 and 1:

$$
\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+\frac{1}{6} x=x(x-1)\left(x-\frac{1}{2}\right)
$$

so it's easy to find the third.

- We get a new point: $\left(\frac{1}{2}, \frac{1}{2}\right)$.
- It's not integral.

Try Again...

	$(-1,0)$	$(0,0)$	$(1,-1)$	$(1,1)$
$(-1,0)$				
$(0,0)$				
$(1,-1)$				
$(1,1)$				

Try Again...

	$(-1,0)$	$(0,0)$	$(1,-1)$	$(1,1)$
$(-1,0)$				
$(0,0)$				$(1 / 2,1 / 2)$
$(1,-1)$				
$(1,1)$		$(1 / 2,1 / 2)$		

The point found in our example.

Try Again...

	$(-1,0)$	$(0,0)$	$(1,-1)$	$(1,1)$
$(-1,0)$				
$(0,0)$			$(1 / 2,-1 / 2)$	$(1 / 2,1 / 2)$
$(1,-1)$		$(1 / 2,-1 / 2)$		
$(1,1)$		$(1 / 2,1 / 2)$		

Because of the symmetry about the x-axis.

Try Again...

	$(-1,0)$	$(0,0)$	$(1,-1)$	$(1,1)$
$(-1,0)$	$?$			
$(0,0)$		$?$	$(1 / 2,-1 / 2)$	$(1 / 2,1 / 2)$
$(1,-1)$		$(1 / 2,-1 / 2)$	$?$	
$(1,1)$		$(1 / 2,1 / 2)$		$?$

Try Again...

	$(-1,0)$	$(0,0)$	$(1,-1)$	$(1,1)$
$(-1,0)$	$?$			
$(0,0)$		$?$	$(1 / 2,-1 / 2)$	$(1 / 2,1 / 2)$
$(1,-1)$		$(1 / 2,-1 / 2)$	$?$	vertical
$(1,1)$		$(1 / 2,1 / 2)$	vertical	$?$

Try Again...

	$(-1,0)$	$(0,0)$	$(1,-1)$	$(1,1)$
$(-1,0)$	$?$			
$(0,0)$		$?$	$(1 / 2,-1 / 2)$	$(1 / 2,1 / 2)$
$(1,-1)$		$(1 / 2,-1 / 2)$	$?$	vertical
$(1,1)$		$(1 / 2,1 / 2)$	vertical	$?$

Try Again...

Try Again...

	$(-1,0)$	$(0,0)$	$(1,-1)$	$(1,1)$
$(-1,0)$	$?$	$(-1 / 2,0)$		
$(0,0)$	$(-1 / 2,0)$	$?$	$(1 / 2,-1 / 2)$	$(1 / 2,1 / 2)$
$(1,-1)$		$(1 / 2,-1 / 2)$	$?$	vertical
$(1,1)$		$(1 / 2,1 / 2)$	vertical	$?$

Try Again...

	$(-1,0)$	$(0,0)$	$(1,-1)$	$(1,1)$
$(-1,0)$	$?$	$(-1 / 2,0)$		
$(0,0)$	$(-1 / 2,0)$	$?$	$(1 / 2,-1 / 2)$	$(1 / 2,1 / 2)$
$(1,-1)$		$(1 / 2,-1 / 2)$	$?$	vertical
$(1,1)$		$(1 / 2,1 / 2)$	vertical	$?$

Try Again...

Try Again...

	$(-1,0)$	$(0,0)$	$(1,-1)$	$(1,1)$
$(-1,0)$	$?$	$(-1 / 2,0)$		$\left(-\frac{3}{4}, \frac{1}{8}\right)$
$(0,0)$	$(-1 / 2,0)$	$?$	$(1 / 2,-1 / 2)$	$(1 / 2,1 / 2)$
$(1,-1)$		$(1 / 2,-1 / 2)$	$?$	vertical
$(1,1)$	$\left(-\frac{3}{4}, \frac{1}{8}\right)$	$(1 / 2,1 / 2)$	vertical	$?$

Try Again...

	$(-1,0)$	$(0,0)$	$(1,-1)$	$(1,1)$
$(-1,0)$	$?$	$(-1 / 2,0)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$\left(-\frac{3}{4}, \frac{1}{8}\right)$
$(0,0)$	$(-1 / 2,0)$	$?$	$(1 / 2,-1 / 2)$	$(1 / 2,1 / 2)$
$(1,-1)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$(1 / 2,-1 / 2)$	$?$	vertical
$(1,1)$	$\left(-\frac{3}{4}, \frac{1}{8}\right)$	$(1 / 2,1 / 2)$	vertical	$?$

Because of the symmetry about the x-axis.

Try Again...

	$(-1,0)$	$(0,0)$	$(1,-1)$	$(1,1)$
$(-1,0)$	$?$	$(-1 / 2,0)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$\left(-\frac{3}{4}, \frac{1}{8}\right)$
$(0,0)$	$(-1 / 2,0)$	$?$	$(1 / 2,-1 / 2)$	$(1 / 2,1 / 2)$
$(1,-1)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$(1 / 2,-1 / 2)$	$?$	vertical
$(1,1)$	$\left(-\frac{3}{4}, \frac{1}{8}\right)$	$(1 / 2,1 / 2)$	vertical	$?$

No new integral points.

Try Again...

	$(-1,0)$	$(0,0)$	$(1,-1)$	$(1,1)$
$(-1,0)$	$?$	$(-1 / 2,0)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$\left(-\frac{3}{4}, \frac{1}{8}\right)$
$(0,0)$	$(-1 / 2,0)$	$?$	$(1 / 2,-1 / 2)$	$(1 / 2,1 / 2)$
$(1,-1)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$(1 / 2,-1 / 2)$	$?$	vertical
$(1,1)$	$\left(-\frac{3}{4}, \frac{1}{8}\right)$	$(1 / 2,1 / 2)$	vertical	$?$

Something old, something new...

...and Again!

Take the line through $(1 / 2,-1 / 2)$ and $(1,1)$.

$$
y=3 x-2
$$

...and Again!

Take the line through $(1 / 2,-1 / 2)$ and $(1,1)$.

$$
y=3 x-2
$$

Put this into the curve:

$$
\begin{aligned}
(3 x-2)^{2} & =\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{6} x \\
0 & =\frac{1}{3} x^{3}-\frac{17}{2} x^{2}+\frac{73}{6} x-4
\end{aligned}
$$

...and Again!

- Take the line through $(1 / 2,-1 / 2)$ and $(1,1)$.

$$
y=3 x-2
$$

Put this into the curve:

$$
\begin{aligned}
(3 x-2)^{2} & =\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{6} x \\
0 & =\frac{1}{3} x^{3}-\frac{17}{2} x^{2}+\frac{73}{6} x-4 \\
0 & =\left(x-\frac{1}{2}\right)(x-1)(x-?)
\end{aligned}
$$

...and Again!

- Take the line through $(1 / 2,-1 / 2)$ and $(1,1)$.

$$
y=3 x-2
$$

Put this into the curve:

$$
\begin{aligned}
(3 x-2)^{2} & =\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{6} x \\
0 & =\frac{1}{3} x^{3}-\frac{17}{2} x^{2}+\frac{73}{6} x-4 \\
0 & =\left(x-\frac{1}{2}\right)(x-1)(x-24)
\end{aligned}
$$

...and Again!

- Take the line through $(1 / 2,-1 / 2)$ and $(1,1)$.

$$
y=3 x-2
$$

Put this into the curve:

$$
\begin{aligned}
(3 x-2)^{2} & =\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{6} x \\
0 & =\frac{1}{3} x^{3}-\frac{17}{2} x^{2}+\frac{73}{6} x-4 \\
0 & =\left(x-\frac{1}{2}\right)(x-1)(x-24)
\end{aligned}
$$

- This gives the point $(24,70)$.

Cannonballs Solution $70^{2}=1^{2}+2^{2}+\ldots+24^{2}$

Cannonballs Solution $70^{2}=1^{2}+2^{2}+\ldots+24^{2}$

- A 70×70 square of cannonballs contains 4900 cannonballs.
- A pyramid of height 24 also contains 4900 cannonballs.

Cannonballs Solution

$$
70^{2}=1^{2}+2^{2}+\ldots+24^{2}
$$

- A 70×70 square of cannonballs contains 4900 cannonballs.
- A pyramid of height 24 also contains 4900 cannonballs.

Are there any more solutions?

Cannonballs Solution $70^{2}=1^{2}+2^{2}+\ldots+24^{2}$

- A 70×70 square of cannonballs contains 4900 cannonballs.
- A pyramid of height 24 also contains 4900 cannonballs.

Are there any more solutions?
Watson (1918): No.

Beyond Cannonballs

- The curve

$$
y^{2}=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{6} x
$$

is an example of an Elliptic Curve.

Beyond Cannonballs

- The curve

$$
y^{2}=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{6} x
$$

is an example of an Elliptic Curve.

- Elliptic curves are special because you can "add" two points to get a third.

Beyond Cannonballs

- The curve

$$
y^{2}=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{6} x
$$

is an example of an Elliptic Curve.

- Elliptic curves are special because you can "add" two points to get a third.
- When adding a point to itself, use the tangent line.

Beyond Cannonballs

- The curve

$$
y^{2}=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{6} x
$$

is an example of an Elliptic Curve.

- Elliptic curves are special because you can "add" two points to get a third.
- When adding a point to itself, use the tangent line.
- Need to include one more special point, ∞, that lies at the top and bottom of every vertical line.

Addition Table

	$(-1,0)$	$(0,0)$	$(1,-1)$	$(1,1)$
$(-1,0)$	$?$	$(-1 / 2,0)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$\left(-\frac{3}{4}, \frac{1}{8}\right)$
$(0,0)$	$(-1 / 2,0)$	$?$	$(1 / 2,-1 / 2)$	$(1 / 2,1 / 2)$
$(1,-1)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$(1 / 2,-1 / 2)$	$?$	vertical
$(1,1)$	$\left(-\frac{3}{4}, \frac{1}{8}\right)$	$(1 / 2,1 / 2)$	vertical	$?$

Addition Table

	$(-1,0)$	$(0,0)$	$(1,-1)$	$(1,1)$
$(-1,0)$	$?$	$(-1 / 2,0)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$\left(-\frac{3}{4}, \frac{1}{8}\right)$
$(0,0)$	$(-1 / 2,0)$	$?$	$(1 / 2,-1 / 2)$	$(1 / 2,1 / 2)$
$(1,-1)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$(1 / 2,-1 / 2)$	$?$	∞
$(1,1)$	$\left(-\frac{3}{4}, \frac{1}{8}\right)$	$(1 / 2,1 / 2)$	∞	$?$
Vertical lines include the point ∞				

Tangent Lines Through $(-1,0)$ and $(0,0)$

Addition Table

	$(-1,0)$	$(0,0)$	$(1,-1)$	$(1,1)$
$(-1,0)$	∞	$(-1 / 2,0)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$\left(-\frac{3}{4}, \frac{1}{8}\right)$
$(0,0)$	$(-1 / 2,0)$	∞	$(1 / 2,-1 / 2)$	$(1 / 2,1 / 2)$
$(1,-1)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$(1 / 2,-1 / 2)$	$?$	∞
$(1,1)$	$\left(-\frac{3}{4}, \frac{1}{8}\right)$	$(1 / 2,1 / 2)$	∞	$?$
Vertical lines include the point ∞				

Tangent Line Through $(1,1)$

Addition Table

	$(-1,0)$	$(0,0)$	$(1,-1)$	$(1,1)$
$(-1,0)$	∞	$(-1 / 2,0)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$\left(-\frac{3}{4}, \frac{1}{8}\right)$
$(0,0)$	$(-1 / 2,0)$	∞	$(1 / 2,-1 / 2)$	$(1 / 2,1 / 2)$
$(1,-1)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$(1 / 2,-1 / 2)$	$?$	∞
$(1,1)$	$\left(-\frac{3}{4}, \frac{1}{8}\right)$	$(1 / 2,1 / 2)$	∞	$\left(\frac{1}{48}, \frac{-35}{576}\right)$

Addition Table

	$(-1,0)$	$(0,0)$	$(1,-1)$	$(1,1)$
$(-1,0)$	∞	$(-1 / 2,0)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$\left(-\frac{3}{4}, \frac{1}{8}\right)$
$(0,0)$	$(-1 / 2,0)$	∞	$(1 / 2,-1 / 2)$	$(1 / 2,1 / 2)$
$(1,-1)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$(1 / 2,-1 / 2)$	$\left(\frac{1}{48}, \frac{35}{576}\right)$	∞
$(1,1)$	$\left(-\frac{3}{4}, \frac{1}{8}\right)$	$(1 / 2,1 / 2)$	∞	$\left(\frac{1}{48}, \frac{-35}{576}\right)$

Because of the symmetry about the x-axis.

Addition Table

	$(-1,0)$	$(0,0)$	$(1,-1)$	$(1,1)$
$(-1,0)$	∞	$(-1 / 2,0)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$\left(-\frac{3}{4}, \frac{1}{8}\right)$
$(0,0)$	$(-1 / 2,0)$	∞	$(1 / 2,-1 / 2)$	$(1 / 2,1 / 2)$
$(1,-1)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$(1 / 2,-1 / 2)$	$\left(\frac{1}{48}, \frac{35}{576}\right)$	∞
$(1,1)$	$\left(-\frac{3}{4}, \frac{1}{8}\right)$	$(1 / 2,1 / 2)$	∞	$\left(\frac{1}{48}, \frac{-35}{576}\right)$

Adding Points the Right Way

Adding Points the Right Way

Adding Points the Right Way

Addition Table

+	$(-1,0)$	$(0,0)$	$(1,-1)$	$(1,1)$
$(-1,0)$	∞	$(-1 / 2,0)$	$\left(-\frac{3}{4}, \frac{1}{8}\right)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$
$(0,0)$	$(-1 / 2,0)$	∞	$(1 / 2,1 / 2)$	$(1 / 2,-1 / 2)$
$(1,-1)$	$\left(-\frac{3}{4}, \frac{1}{8}\right)$	$(1 / 2,1 / 2)$	$\left(\frac{1}{48}, \frac{-35}{576}\right)$	∞
$(1,1)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$(1 / 2,-1 / 2)$	∞	$\left(\frac{1}{48}, \frac{35}{576}\right)$

Reverses the sign on the y-coordinate.

Why Do We Add Points This Way?

- By defining addition of points using the reflected point, addition of points behaves like addition of numbers.

Why Do We Add Points This Way?

- By defining addition of points using the reflected point, addition of points behaves like addition of numbers.
- Identity:

$$
P+\infty=P
$$

Why Do We Add Points This Way?

- By defining addition of points using the reflected point, addition of points behaves like addition of numbers.
- Identity:

$$
P+\infty=P
$$

- Inverses:

$$
P+(-P)=\infty
$$

Why Do We Add Points This Way?

- By defining addition of points using the reflected point, addition of points behaves like addition of numbers.
- Identity:

$$
P+\infty=P
$$

- Inverses: $P+(-P)=\infty$
- Associativity: $\left(P_{1}+P_{2}\right)+P_{3}=P_{1}+\left(P_{2}+P_{3}\right)$

Why Do We Add Points This Way?

- By defining addition of points using the reflected point, addition of points behaves like addition of numbers.
- Identity:

$$
P+\infty=P
$$

- Inverses: $\quad P+(-P)=\infty$
- Associativity: $\left(P_{1}+P_{2}\right)+P_{3}=P_{1}+\left(P_{2}+P_{3}\right)$
- Commutivity: $P_{1}+P_{2}=P_{2}+P_{1}$

Why Do We Add Points This Way?

- By defining addition of points using the reflected point, addition of points behaves like addition of numbers.
- Identity:

$$
P+\infty=P
$$

- Inverses: $\quad P+(-P)=\infty$
- Associativity: $\left(P_{1}+P_{2}\right)+P_{3}=P_{1}+\left(P_{2}+P_{3}\right)$
- Commutivity: $P_{1}+P_{2}=P_{2}+P_{1}$
- The rational points form an abelian group.

Real World Applications

Real World Applications

- Cryptography

Real World Applications

- Cryptography
- Define

$$
n P=\underbrace{P+P+\ldots+P}_{n \text { times }}
$$

Real World Applications

- Cryptography
- Define

$$
n P=\underbrace{P+P+\ldots+P}_{n \text { times }}
$$

Recall: Adding points means drawing lines and solving for intersections.

Addition Table

+	$(-1,0)$	$(0,0)$	$(1,-1)$	$(1,1)$
$(-1,0)$	∞	$(-1 / 2,0)$	$\left(-\frac{3}{4}, \frac{1}{8}\right)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$
$(0,0)$	$(-1 / 2,0)$	∞	$(1 / 2,1 / 2)$	$(1 / 2,-1 / 2)$
$(1,-1)$	$\left(-\frac{3}{4}, \frac{1}{8}\right)$	$(1 / 2,1 / 2)$	$\left(\frac{1}{48}, \frac{-35}{576}\right)$	∞
$(1,1)$	$\left(-\frac{3}{4},-\frac{1}{8}\right)$	$(1 / 2,-1 / 2)$	∞	$\left(\frac{1}{48}, \frac{35}{576}\right)$
For example: $2(1,-1)=\left(\frac{1}{48}, \frac{-35}{576}\right)$				

Real World Applications

- Cryptography
- Define

$$
n P=\underbrace{P+P+\ldots+P}_{n \text { times }}
$$

Recall: Adding points means drawing lines and solving for intersections.

Real World Applications

- Cryptography
- Define

$$
n P=\underbrace{P+P+\ldots+P}_{n \text { times }}
$$

Recall: Adding points means drawing lines and solving for intersections.

- To find $3(1,-1)$, use the line through $\left(\frac{1}{48}, \frac{-35}{576}\right)$ and $(1,-1)$, determine the new intersection with the curve and reflect.

Real World Applications

- Really Hard Problem:

Given two points on the curve P and Q, find an integer n such that

$$
Q=n P
$$

Real World Applications

- Really Hard Problem:

Given two points on the curve P and Q, find an integer n such that

$$
Q=n P
$$

- Example: $\left(\frac{1324801}{235200}, \frac{1726556399}{197568000}\right)=n(1,-1)$.

Real World Applications

- Really Hard Problem:

Given two points on the curve P and Q, find an integer n such that

$$
Q=n P
$$

- Example: $\left(\frac{1324801}{235200}, \frac{1726556399}{197568000}\right)=n(1,-1)$.
- If n is really large (~ 200 digits), this is computationally infeasible to solve.

Real World Applications

- Really Hard Problem:

Given two points on the curve P and Q, find an integer n such that

$$
Q=n P
$$

- Example: $\left(\frac{1324801}{235200}, \frac{1726556399}{197568000}\right)=n(1,-1)$.
- If n is really large (~ 200 digits), this is computationally infeasible to solve.
- If I know n and P, it is easy to compute Q.

Real World Applications

- Really Hard Problem:

Given two points on the curve P and Q, find an integer n such that

$$
Q=n P
$$

- Example: $\left(\frac{1324801}{235200}, \frac{1726556399}{197568000}\right)=4(1,-1)$.
- If n is really large (~ 200 digits), this is computationally infeasible to solve.
- If I know n and P, it is easy to compute Q.

Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange

- Alice and Bob want to establish a secret key.

Alice
Public
Bob

Diffie-Hellman Key Exchange

- Alice and Bob want to establish a secret key.

Alice

Public
Curve equation
Point P

Bob

Diffie-Hellman Key Exchange

- Alice and Bob want to establish a secret key.

Bob

Secret number b

Diffie-Hellman Key Exchange

- Alice and Bob want to establish a secret key.

Bob
Secret number b

Sends $b P$

Diffie-Hellman Key Exchange

- Alice and Bob want to establish a secret key.

Bob
Secret number b

Gets $a P$
Sends $b P$

Diffie-Hellman Key Exchange

- Alice and Bob want to establish a secret key.

Alice
Secret number a
Sends $a P$ Gets $b P$

Computes:
$a(b P)=(a b) P$

Public

Curve equation
Point P

Bob
Secret number b

Gets $a P$
Sends $b P$
Computes:
$b(a P)=(b a) P$

Diffie-Hellman Key Exchange

- Alice and Bob want to establish a secret key.

Alice
Secret number a
Sends $a P$
Gets $b P$
Computes:
$a(b P)=(a b) P$

Public

Curve equation
Point P

Bob
Secret number b

Gets $a P$
Sends $b P$
Computes:

$$
\begin{aligned}
b(a P) & =(b a) P \\
& =(a b) P
\end{aligned}
$$

Diffie-Hellman Key Exchange

- Alice and Bob want to establish a secret key.

Alice
Secret number a
Sends $a P$
Gets $b P$
Computes:
$a(b P)=(a b) P$

Public

Curve equation
Point P

Bob

Secret number b

Gets $a P$
Sends $b P$
Computes:

$$
\begin{aligned}
b(a P) & =(b a) P \\
& =(a b) P
\end{aligned}
$$

Thank you.

Questions?

