
Recollection Sheet

• χ is a character on OK , the ring of integers of a quadratic

imaginary field K of discriminant −D.

• f =
∑

amqm is a weight 2 newform of level N , a rational

prime inert in K.

• u = #(O×K/Z×) and ε(p) = Legendre symbol
(
−D
p

)
.

• Ri is a maximal order in B, the quaternion algebra ramify-

ing at N and ∞.

• Γi = R×i /Z× and ωi = #Γi = half the units of Ri.

• {ei} is the natural basis for Pic(XN) where we think of

XN =
∐

Xi.

• Θ =
∑

m tmqm ∈ End(Pic(Xn))[[q]].

• Φ(e, e′) =
〈
Θe, e′

〉
.

• xA is the image of x ∈ XN after being acted on by A ∈

Pic(OK).

• c(χ) =
∑

χ(A)−1xA.

• θA(z) = 1
2u

∑
λ∈a

qNλ/Na = 1
2u

∑
m≥0

rA(m)qm
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Introduction

Let:

• f =
∞∑

m=1
amqm is a cusp form of weight 2 on Γ0(N), with

N prime.

• L(f, s) =
∞∑

m=1
amm−s the associated Hecke L-series given

by the Mellin transform.

and

• K is a quadratic imaginary field with discriminant −D and

ring of integers OK .

• χ : Pic(OK)→ C× where Pic(OK) is the ideal class group

of K.

• L(χ, s) =
∑

a⊂OK

χ(a) (Na)−s =
∞∑

m=1
bmm−s.

When the Rankin-Selberg product L(f, χ, s) has an odd func-

tional equation, the famous Gross-Zagier paper gives an explicit

formula for L′(f, χ, 1) in terms of heights.

When the functional equation is even, Gross gives an explicit

formula for L(f, χ, 1) in terms of heights.



Introduction, cont.

Rankin-Selberg: The combined L-series for f and χ is

L(f, χ, s) = ζ(2s− 2)

∞∑
m=1

ambmm−s

For a slightly modified function, L∗(f, χ, s), Rankin-Selberg

also gives a functional equation

L∗(f, χ, 2− s) = −ε(N)L∗(f, χ, s).

where ε(N) is the Legendre symbol
(−D

N

)
.

Heights

• Gross-Zagier: Neron-Tate Heights of Heegner points on a

modular curve.

• Gross: “Heights” of special points on a curve XN associated

to a definite quaternion algebra B ramifying at N and ∞.



Outline

• We start with an L-series defined as the Rankin-Selberg

product of L(f, s) and L(χ, s).

• Then, given a prime N , we construct a curve, XN , together

with a height pairing and the Hecke module structure on

Pic(XN).

• We give points on this curve which are associated to the

field K and a character χ.

• Finally, we compute the special value of the L-series as the

height pairing on the f -component of these points.



Rankin-Selberg L-Series

• Given a cusp form f =
∞∑

m=1
amqm we can consider the as-

sociated L-series given by the Mellin transform:

L(f, s) =

∞∑
m=1

amm−s

=
∏

p prime

[(1− α1(p)p−s)(1− α2(p)p−s)]−1

• We’ll take f to be level N , a prime.

• Let K be an imaginary quadratic field with ring of integers

OK . Let χ be a character on the ideal class group Pic(OK).

Then there is an associated L-series:

L(χ, s) =
∑

a∈Pic(OK)

χ(a)(Na)−s

=
∏

p prime

[(1− β1(p)p−s)(1− β2(p)p−s)]−1

• Rankin and Selberg provide a natural way to combine these

to give:

L(f, χ, s) =
∏

p prime

 ∏
i=1,2

∏
j=1,2

(1− αi(p)βj(p)p−s)

−1



Properties from Rankin-Selberg

The Rankin-Selberg method gives two important properties of

L(f, χ, s):

1. L∗(f, χ, s) := (2π)−2sΓ(s)2(ND)sL(f, χ, s) has analytic

continuation to the whole plane, where D = −Disc(K).

2. L∗(f, χ, 2− s) = −ε(N)L∗(f, χ, s).

• Note: The critical value is s = 1.

• Gross and Zagier examine in detail the case of an odd func-

tional equation, i.e. ε(N) = 1, i.e. N split in K. Hence,

L(f, χ, 1) = 0 and the first derivative is the interesting

value.

• On the other hand, Gross considers the case of an even

functional equation, i.e. ε(N) = −1, i.e. N inert in K.

Here the value at s = 1 is pertinent.



Main Theorem

Theorem. Let f be a weight 2 newform on Γ0(N) with N

an inert prime in an imaginary quadratic field K with dis-

criminant −D. Let χ be a character of Pic(OK). Then

L(f, χ, 1) =
1

u2
√

D
〈f, f〉Pet〈cf(χ), cf(χ)〉

where u = #(O×K/Z×), 〈·, ·〉Pet is the Petersson inner prod-

uct, and 〈cf(χ), cf(χ)〉 is the height pairing of a certain di-

visor, cf(χ), with itself on a certain curve, XN .



Construction of XN

• Let B the unique quaternion algebra over Q ramifying at N

and∞, i.e. B⊗QQN and B⊗QR are division algebras over

QN and R, resp., and for all other primes p, B ⊗Q Qp
∼=

M2(Qp).

• Fix a maximal order R ⊂ B

• Equivalence of Left Ideals of R: I ∼ J ⇔ ∃b ∈ B× such

that J = Ib (where B× are the units of B).

• Let {I1 = R, I2, ..., In} represent the ideal classes. n is

called the class number of B and is independent of R.

• For every Ii the associated maximal order is

Ri = {b ∈ B|Iib ⊂ Ii}

• Set Γi = R×i /Z× and ωi = #Γi = half the number of units

of Ri.



Adeles on B

• As usual Ẑ =
∏
p

Zp and Q̂ = Ẑ⊗Q.

• For every prime p, we can define the local components of the

maximal orders Ri,p = Ri⊗Zp and then set R̂i = Ri⊗ Ẑ.

• Likewise, B̂ = B ⊗ Q̂.

• Every ideal I of R is locally principal, so ∃gI,p ∈ R×p \B×p
such that Ip = RpgI,p.

• Then there’s a bijection

{ideals of R} ←→ R̂×\B̂×

I ←→ gI = (...gI,p...)

• Recall the equivalence relation between left ideals and get

n = #R̂×\B̂×/B×

• So choose representatives gi such that

B̂× =

n⋃
i=1

R̂×giB×

• Can recover Ri from gi by

Ri = B ∩ g−1
i R̂gi



The Curve XN

• Every quaternion algebra, C over Q, has an associated

genus 0 curve YC where for any Q-algebra, W , the W points

of YC are given by

YC(W ) = {α ∈ C ⊗Q W |α 6= 0, Trα = Nα = 0}/W×

• Let Y = YB be the curve associated to B. Notice B× acts

on (the right of) Y by conjugation.

• Then set

XN = (R̂×\B̂× × Y )/B×

• Then it is more natural to think of XN as

XN =

n∐
i=1

Y/Γi

(R̂×gi, y) mod B× 7→ y mod Γi on Xi := Y/Γi

• Each Xi
∼= P1/Γi.



Pic(XN) and The Height Pairing

• Definitions of Pic(XN).

1. It is the group of line bundles on XN .

2. It is the group of invertible sheafs of XN .

3. When XN is nice, it is isomorphic to the divisor class

group.

• Pic(XN) = Pic(
∐n

i=1 Xi) =
∐n

i=1 Pic(Xi)

• Each Xi
∼= P1. And Pic(P1) ∼= Z.

• Hence, Pic(XN) ∼= Zn.

• So let ei be the generator of Pic(Xi). Hence {ei} is a basis

for Pic(XN).

• Define the height pairing on basis elements:

〈ei, ej〉 =

 ωi if i = j

0 otherwise

and extend biadditively to all of Pic(XN).

• 〈·, ·〉 gives an embedding

Pic(XN)∨ = Hom(Pic(XN), Z) ↪→ Pic(XN)⊗Q

e∨i 7→ ei/ωi



Relationship Between XN and Supersingular

Elliptic Curves

Recall that an elliptic curve E/Fq is call supersingular if E(Fq)

has no points of order char(Fq).

Lemma. Let F be an algebraically closed field of character-

istic N and n be the class number of B. Then there are n

distinct isomorphism classes of supersingular elliptic curves

over F and furthermore

End(Ei) ∼= Ri

This sets up bijections: Components

of XN

 ←→

 Maximal

Orders of B

←→
 Supersingular

ECs over F


Xi ←→ Ri ←→ Ei



Hecke Operators

• Want to use these associations to define a Hecke operator

on Pic(XN).

tm[Ei] :=
∑
λij

[Ej]

where λij ∈ Homm(Ei, Ej)/Aut(Ej).

• Then use the bijections to define over the ei instead of the

Ei.

• Adjointness: For any two divisors, e and e∨,

〈tme, e∨〉 = 〈e, tme∨〉.

• Let PicQ(XN) = Pic(XN)⊗Q. If we then consider

tm ∈ End(PicQ(XN)) with the {ei} basis, we get the Brandt

matrices tm = B(m) ∈Mn(Q) with entries

[B(m)]ij = Bij(m) = # Homm(Ei, Ej)/Aut(Ej)

and set Bij(0) = 1
2ωj

.

• In fact, B(1) = In and B(m) ∈Mn(Z) for m ≥ 1



The Generating Series Θ

Define

Θ =
∑
m≥0

tmqm ∈ End(PicQ(XN))[[q]]

Proposition. Θ is a weight 2 modular form of level N ,

valued in End(PicQ(XN)).

Proof. Consider

[Θ]ij =
∑
m≥0

Bij(m)qm

=
1

#Aut(Ej)

∑
φ∈ Hom(Ei,Ej)

qdeg φ

If we now recall that End(Ei) ∼= Ri then we see that

Hom(Ei, Ej) ∼= I−1
j Ii.

If φ 7→ b, then deg φ = Nb
N(I−1

j Ii)
. So

[Θ]ij =
1

2ωj

∑
b∈I−1

j Ii

q

Nb

N(I−1
j Ii)

This is just a standard θ-series over a lattice and hence a mod-

ular form of weight 2.

Corollary. For any e and e∨, Φ(e, e∨) := 〈Θe, e∨〉 is a C-

valued weight 2 modular form over Γ0(N).



Next Time

• We will take a closer look at the Hecke operators tm and see

how they relate to the usual Hecke operators on modular

forms.

• Using this relation, we will be able to define and talk about

Hecke eigencomponents of Pic(XN) and how Φ acts on

them.

• Then we will define a set of points on XN given by the field

K and examine their properties.

• Next, we’ll fix a distinguished element of Pic(XN) and show

how it allows us to rephrase the main identity.

• Lastly, we’ll go over the final proof of the main identity

with as many details as time allows.



Last Time

• We had a Rankin-Selberg L-series L(f, χ, s) determined by

1. A character χ of Pic(OK) where K is a quadratic imag-

inary field.

2. A cusp form f of level N , a prime inert in K.

And it had an even functional equation.

Theorem.

L(f, χ, 1) =
1

u2
√

D
〈f, f〉Pet〈cf(χ), cf(χ)〉

where −D = disc(K), u = #(O×K/Z×), 〈·, ·〉Pet is the Pe-

tersson inner product, and cf(χ) is an element of Pic(XN).

• We then used the unique quaternion algebra B that ramified

at N and ∞ to construct the curve

XN =

n∐
i=1

Y/Γi

with Y ∼= P1.

• Next, we defined a “height” pairing 〈·, ·〉 on Pic(XN) and

Hecke operators tm based on the relations between XN and

supersingular elliptic curves.

• Lastly, we had modular forms Θ valued in End(PicQ(XN))

and Φ valued in C.



Hecke Structure

• Let MQ denote the modular forms of weight 2 on Γ0(N)

with rational coefficients, and let Tm be the standard Hecke

operators onMQ. Then T = Q[...Tm...] is a subalgebra of

End(MQ).

• Similarly B = Q[...tm...] is a subalgebra of End(PicQ(XN)).

• Recall B(m) was the matrix for tm in the {ei} basis.

• By establishing Trace(Tm) = Trace(B(m)), Eichler showed

that there is a ring isomorphism T ∼= B that takes Tm 7→

tm. This leads to the following proposition and its corollary:

• Recall, we defined a generating series

Θ =
∑
m≥0

tmqm ∈ End(PicQ(XN))[[q]]

and showed that it was a weight 2 modular form and that

for any e and e∨, Φ(e, e∨) := 〈Θe, e∨〉 is a C-valued weight

2 modular form over Γ0(N).

Proposition. Θ|Tm = tm ◦ Θ = Θ ◦ tm

Corollary. Φ(e, e∨)|Tm = Φ(tme, e∨) = Φ(e, tme∨)



Hecke Eigencomponents

Modular Forms

• MQ is a free T-module of rank 1 by the multiplicity one

theorem since every eigenform inMR is a newform of level

N . (Since there are no weight 2 oldforms and N is prime.)

• f =
∑

amqm is an eigenfunction of T, so f |Tm = amf for

each m. Set

Mf =
⋂
m

ker(Tm − am)

• Mf = Cf ⊂MC which is an n-dimensional vector space.

Pic(XN)

• PicQ(XN) is a free B module of rank 1.

• Since T ∼= B, we getMC ∼= TC ∼= BC ∼= PicC(XN).

• Define PicC(XN)f to be the corresponding 1-dimensional

subspace of PicC(XN) and for a divisor e, let ef to be its

projection onto this f -eigencomponent.

MC

��

PicC(XN)

��

Mf PicC(XN)f

Tautology: For any divisor c, tmcf = amcf .



Φ on the f-eigencomponent

• Recall Φ : Pic(XN)× Pic(XN)→M defined by

Φ(c, c′) = 〈Θc, c′〉

• Consider

Φ(cf , c
′
f) = 〈Θcf , c

′
f〉

=

〈 (∑
tmqm

)
cf , c

′
f

〉
=

〈 (∑
amqm

)
cf , c

′
f

〉
= f · 〈cf , c

′
f〉

Therefore 〈f, Φ(cf , c
′
f)〉Pet = 〈f, f〉Pet · 〈cf , c

′
f〉.

• Since Φ(tmc, c′) = Φ(c, c′)|Tm and 〈cf , c
′〉 = 〈cf , c

′
f〉, then

Φ(cf , c
′
f) = Φ(c, c′)f

=⇒ 〈f, Φ(c, c′)〉Pet = 〈f, Φ(cf , c
′
f)〉Pet

= 〈f, f〉Pet · 〈cf , c
′
f〉

〈f, Φ(c, c′)〉Pet = 〈f, f〉Pet · 〈cf , c
′
f〉



Special Points and Fine Structure of XN

• Recall

XN =

n∐
i=1

Y/Γi = (R̂×\B̂× × Y )/B×

Y (K) = {α ∈ B ⊗K|α 6= 0, Trα = Nα = 0}/K×.

• Let the special points be defined as

XN(K) := (R̂×\B̂× × Y (K))/B×

• There is an identification Hom(K,B) = Y (K) by

ρ 7→ α ∈ Y (K) such that ∀k ∈ K×, ρ(k)−1αρ(k) = αρ
(
k/k̄

)
• Under this identification, the B× action becomes conjuga-

tion, (ρ · b)(k) := b−1ρ(k)b.

• Let x = (h, yρ) mod B× ∈ XN(K), where ρ : K ↪→ B. We

then define the discriminant as disc(x) := disc(O) where

ρ(K) ∩ h−1R̂h = ρ(O) for some order O ⊂ K.

• Let XN(K,O) = {x ∈ XN(K)|disc(x) = disc(O)}. Then

we can make the following decomposition:

XN(K) =
⋃
O⊂K

XN(K,O)

• We also get a (non-obvious) transitive action of Pic(O) on

XN(K,O) which we will denote by x 7→ xA.



The Distinguished Divisor

• Recall the main theorem we are trying to prove is

L(f, χ, 1) =
1

u2
√

D
〈f, f〉Pet〈cf(χ), cf(χ)〉.

• Fix a special point x ∈ XN of discriminant D. Define

c(χ) =
∑

A∈Pic(OK)

χ(A)−1xA

and let cf(χ) be its f -component.

• From what we’ve shown previously then

〈f, f〉Pet〈cf(χ), cf(χ)〉 = 〈f, Φ(c(χ), c(χ))〉Pet

• So the identity to be shown is

L(f, χ, 1) =
1

u2
√

D
〈f, Φ(c(χ), c(χ))〉Pet.

• Rankin and Selberg, through analytic methods, also give

us L(f, χ, 1) as a Petersson inner product.



Eliminating χ Dependence

• Putting in our distinguished divisor c(χ) yields

〈f, Φ(c(χ), c(χ))〉Pet =

〈
f,

∑
A,B∈Pic(OK)

χ(A)−1χ(B)Φ(xA, xB)

〉
Pet

=

〈
f,

∑
A

χ(A)
∑
B

Φ(xB, xAB)

〉
Pet

=
∑

A

χ(A)

〈
f,

∑
B

Φ(xB, xAB)

〉
Pet

• Likewise,

L(f, χ, s) =
∑

A

χ(A)L(f, A, s)

where

L(f, A, s) =

 ∑
(m,N)=1
m≥1

ε(m)

m2s−1


[∑

m≥1

amrA(m)

ms

]

ε(m) =
(−D

m

)
and the rA(m) are given by fixing an ideal a

in the ideal class A and setting

θA(z) =
1

2u

∑
λ∈a

qNλ/Na =
1

2u

∑
m≥0

rA(m)qm

• So the main theorem is now equivalent to showing

L(f, A, 1) =
1

u2
√

D

〈
f,

∑
B

Φ(xB, xAB)

〉
Pet



Method to Prove Main Theoreom

1. Use Rankin-Selberg to obtain L(f, A, 1) as a Petersson in-

ner product of f with a modular form constructed from

an Eisenstein series. Then perform a trace computation to

compute the Fourier coefficients of this form.

2. Compute Fourier coefficients of
∑
B

Φ(xB, xAB) using alge-

braic/geometric properties.

3. Compare.



Rankin-Selberg Method

• Define a new Eisenstein series

END(s, z) =
∑

(m,N)=1
m≥1

ε(m)

m2s−1

∑
γ∈Γ∞\Γ0(ND)

ε(d)

(cz + d)

ys

|cz + d|2s

• END(s, z) is a weight 1 modular form of level ND with

character ε.

• Then standard integration techniques developed by Rankin

and Selberg give

(4π)−sΓ(s)L(f, A, s) =

∫∫
FND

f (z)θA(z)END(s̄− 1, z)dxdy

• Therefore at s = 1 we get

1

4π
L(f, A, 1) =

〈
f, θAEND(0, z)

〉
Pet

• Now the main theorem can be further reduced to showing〈
f, θAEND(0, z)

〉
Pet

=
4π

u2
√

D

〈
f,

∑
B

Φ(xB, xAB)

〉
Pet

• We can do so by showing the stronger statement

θAEND(0, z) =
4π

u2
√

D

∑
B

Φ(xB, xAB)

(for a specific x ∈ XN) by computing Fourier coefficients

of each.



The Fourier Coefficients of
∑

B Φ(xB, xAB)

Φ(xB, xAB) =
〈
ΘxB, xAB

〉
=

∑
m

〈
tmxB, xAB

〉
qm

So we need to compute
〈
tmxB, xAB

〉
=

〈
xB, tmxAB

〉
.

• Recall we had the associations Xi ←→ Ri ←→ Ei.

• Then
〈
xB, tmxAB

〉
= 1

2#Homm(EB, EAB) where EB de-

notes the supersingular elliptic curve corresponding to xB.

• Consider B = K + Kη where η2 = −N and ηα = ᾱη

∀α ∈ K. Let D =
(√
−D

)
be the different of OK . Let

ε2 ≡ −N mod D.

• A theorem proved in a paper by one of Gross’s students

then states we can chose x ∈ XN such that

End(Ex) =
{
α + βη|α, β ∈ D−1, α ≡ εβ mod OD

}
where OD is OK localized at the prime D.

Note. x may actually be chosen as an arbitrary spe-

cial point on XN with discriminant D. This changes

Φ(xB, xAB) by an oldform. Since we’re taking the Pe-

tersson inner product with f , a newform, this doesn’t

affect the overall calculation.



The Fourier Coefficients of
∑

B Φ(xB, xAB), cont.

• Fix a and b ideals in the classes of A and B with a and

b relatively prime to D. Then the above lets us form a

bijection between Hom(EB, EAB) and the set{
α + βη|α ∈ D−1a, β ∈ D−1b−1b̄ā, α ≡ εβ mod OD

}
such that deg(φ)←→ (Nα + NNβ)/Na.

• We want to count the number of solutions to Nα+NNβ =

mNa with α, β as above.

• Recall rA(m) = # {λ ∈ a in the class A|Nλ = mNa}.

• Set δ(n) = # of primes dividing both n and D. Then our

Fourier coefficients are〈
xB, tmxAB

〉
= u2

mD/N∑
n=0

rA−1(mD − nN)2δ(n)rAB2(n)

• These coefficients are the same as those arrived at through

the Rankin-Selberg method up to the outside constant 4π
u2
√

D
.

• Hence,〈
f, θAEND(0, z)

〉
Pet

=
4π

u2
√

D

〈
f,

∑
B

Φ(xB, xAB)

〉
Pet

and now the main theorem follows.


