Recollection Sheet

- χ is a character on \mathcal{O}_{K}, the ring of integers of a quadratic imaginary field K of discriminant $-D$.
- $f=\sum a_{m} q^{m}$ is a weight 2 newform of level N, a rational prime inert in K.
- $u=\#\left(\mathcal{O}_{K}^{\times} / \mathbb{Z}^{\times}\right)$and $\epsilon(p)=$ Legendre symbol $\left(\frac{-D}{p}\right)$.
- R_{i} is a maximal order in \mathcal{B}, the quaternion algebra ramifying at N and ∞.
- $\Gamma_{i}=R_{i}^{\times} / \mathbb{Z}^{\times}$and $\omega_{i}=\# \Gamma_{i}=$ half the units of R_{i}.
- $\left\{e_{i}\right\}$ is the natural basis for $\operatorname{Pic}\left(X_{N}\right)$ where we think of $X_{N}=\amalg X_{i}$.
- $\Theta=\sum_{m} t_{m} q^{m} \in \operatorname{End}\left(\operatorname{Pic}\left(X_{n}\right)\right)[[q]]$.
- $\Phi\left(e, e^{\prime}\right)=\left\langle\Theta e, e^{\prime}\right\rangle$.
- x_{A} is the image of $x \in X_{N}$ after being acted on by $A \in$ $\operatorname{Pic}\left(\mathcal{O}_{K}\right)$.
- $c(\chi)=\sum \chi(A)^{-1} x_{A}$.
- $\theta_{A}(z)=\frac{1}{2 u} \sum_{\lambda \in \mathfrak{a}} q^{\mathbb{N} \lambda / \mathbb{N a}}=\frac{1}{2 u} \sum_{m \geq 0} r_{A}(m) q^{m}$

Heights and the Special Values of L-series

B.H. Gross

Canadian Mathematical Society, Conference Proceedings,
Volume 7, 1987

Introduction

Let:

- $f=\sum_{m=1}^{\infty} a_{m} q^{m}$ is a cusp form of weight 2 on $\Gamma_{0}(N)$, with N prime.
- $L(f, s)=\sum_{m=1}^{\infty} a_{m} m^{-s}$ the associated Hecke L-series given by the Mellin transform.
and
- K is a quadratic imaginary field with discriminant $-D$ and ring of integers \mathcal{O}_{K}.
- $\chi: \operatorname{Pic}\left(\mathcal{O}_{K}\right) \rightarrow \mathbb{C}^{\times}$where $\operatorname{Pic}\left(\mathcal{O}_{K}\right)$ is the ideal class group of K.
- $L(\chi, s)=\sum_{\mathfrak{a} \subset \mathcal{O}_{K}} \chi(\mathfrak{a})(\mathbb{N a})^{-s}=\sum_{m=1}^{\infty} b_{m} m^{-s}$.

When the Rankin-Selberg product $L(f, \chi, s)$ has an odd functional equation, the famous Gross-Zagier paper gives an explicit formula for $L^{\prime}(f, \chi, 1)$ in terms of heights.

When the functional equation is even, Gross gives an explicit formula for $L(f, \chi, 1)$ in terms of heights.

Introduction, cont.

Rankin-Selberg: The combined L-series for f and χ is

$$
L(f, \chi, s)=\zeta(2 s-2) \sum_{m=1}^{\infty} a_{m} b_{m} m^{-s}
$$

For a slightly modified function, $L^{*}(f, \chi, s)$, Rankin-Selberg also gives a functional equation

$$
L^{*}(f, \chi, 2-s)=-\epsilon(N) L^{*}(f, \chi, s) .
$$

where $\epsilon(N)$ is the Legendre symbol $\left(\frac{-D}{N}\right)$.

Heights

- Gross-Zagier: Neron-Tate Heights of Heegner points on a modular curve.
- Gross: "Heights" of special points on a curve X_{N} associated to a definite quaternion algebra \mathcal{B} ramifying at N and ∞.

Outline

- We start with an L-series defined as the Rankin-Selberg product of $L(f, s)$ and $L(\chi, s)$.
- Then, given a prime N, we construct a curve, X_{N}, together with a height pairing and the Hecke module structure on $\operatorname{Pic}\left(X_{N}\right)$.
- We give points on this curve which are associated to the field K and a character χ.
- Finally, we compute the special value of the L-series as the height pairing on the f-component of these points.

Rankin-Selberg L-Series

- Given a cusp form $f=\sum_{m=1}^{\infty} a_{m} q^{m}$ we can consider the associated L-series given by the Mellin transform:

$$
\begin{aligned}
L(f, s) & =\sum_{m=1}^{\infty} a_{m} m^{-s} \\
& =\prod_{p \text { prime }}\left[\left(1-\alpha_{1}(p) p^{-s}\right)\left(1-\alpha_{2}(p) p^{-s}\right)\right]^{-1}
\end{aligned}
$$

- We'll take f to be level N, a prime.
- Let K be an imaginary quadratic field with ring of integers \mathcal{O}_{K}. Let χ be a character on the ideal class group $\operatorname{Pic}\left(\mathcal{O}_{K}\right)$. Then there is an associated L-series:

$$
\begin{aligned}
L(\chi, s) & =\sum_{\mathfrak{a} \in \operatorname{Pic}\left(\mathcal{O}_{K}\right)} \chi(\mathfrak{a})(\mathbb{N} \mathfrak{a})^{-s} \\
& =\prod_{p \text { prime }}\left[\left(1-\beta_{1}(p) p^{-s}\right)\left(1-\beta_{2}(p) p^{-s}\right)\right]^{-1}
\end{aligned}
$$

- Rankin and Selberg provide a natural way to combine these to give:

$$
L(f, \chi, s)=\prod_{p \text { prime }}\left(\prod_{i=1,2} \prod_{j=1,2}\left(1-\alpha_{i}(p) \beta_{j}(p) p^{-s}\right)\right)^{-1}
$$

Properties from Rankin-Selberg

The Rankin-Selberg method gives two important properties of $L(f, \chi, s)$:

1. $L^{*}(f, \chi, s):=(2 \pi)^{-2 s} \Gamma(s)^{2}(N D)^{s} L(f, \chi, s)$ has analytic continuation to the whole plane, where $D=-\operatorname{Disc}(K)$.
2. $L^{*}(f, \chi, 2-s)=-\epsilon(N) L^{*}(f, \chi, s)$.

- Note: The critical value is $s=1$.
- Gross and Zagier examine in detail the case of an odd functional equation, i.e. $\epsilon(N)=1$, i.e. N split in K. Hence, $L(f, \chi, 1)=0$ and the first derivative is the interesting value.
- On the other hand, Gross considers the case of an even functional equation, i.e. $\epsilon(N)=-1$, i.e. N inert in K. Here the value at $s=1$ is pertinent.

Main Theorem

Theorem. Let f be a weight 2 newform on $\Gamma_{0}(N)$ with N an inert prime in an imaginary quadratic field K with discriminant $-D$. Let χ be a character of $\operatorname{Pic}\left(\mathcal{O}_{K}\right)$. Then

$$
L(f, \chi, 1)=\frac{1}{u^{2} \sqrt{D}}\langle f, f\rangle_{P e t}\left\langle c_{f}(\chi), c_{f}(\chi)\right\rangle
$$

where $u=\#\left(\mathcal{O}_{K}^{\times} / \mathbb{Z}^{\times}\right),\langle\cdot, \cdot\rangle_{\text {Pet }}$ is the Petersson inner product, and $\left\langle c_{f}(\chi), c_{f}(\chi)\right\rangle$ is the height pairing of a certain divisor, $c_{f}(\chi)$, with itself on a certain curve, X_{N}.

Construction of X_{N}

- Let \mathcal{B} the unique quaternion algebra over \mathbb{Q} ramifying at N and ∞, i.e. $\mathcal{B} \otimes_{\mathbb{Q}} \mathbb{Q}_{N}$ and $\mathcal{B} \otimes_{\mathbb{Q}} \mathbb{R}$ are division algebras over \mathbb{Q}_{N} and \mathbb{R}, resp., and for all other primes $p, \mathcal{B} \otimes_{\mathbb{Q}} \mathbb{Q}_{p} \cong$ $M_{2}\left(\mathbb{Q}_{p}\right)$.
- Fix a maximal order $R \subset \mathcal{B}$
- Equivalence of Left Ideals of $R: I \sim J \Leftrightarrow \exists b \in \mathcal{B}^{\times}$such that $J=I b$ (where \mathcal{B}^{\times}are the units of $\left.\mathcal{B}\right)$.
- Let $\left\{I_{1}=R, I_{2}, \ldots, I_{n}\right\}$ represent the ideal classes. n is called the class number of \mathcal{B} and is independent of R.
- For every I_{i} the associated maximal order is

$$
R_{i}=\left\{b \in \mathcal{B} \mid I_{i} b \subset I_{i}\right\}
$$

- Set $\Gamma_{i}=R_{i}^{\times} / \mathbb{Z}^{\times}$and $\omega_{i}=\# \Gamma_{i}=$ half the number of units of R_{i}.

Adeles on \mathcal{B}

- As usual $\widehat{\mathbb{Z}}=\prod_{p} \mathbb{Z}_{p}$ and $\widehat{\mathbb{Q}}=\widehat{\mathbb{Z}} \otimes \mathbb{Q}$.
- For every prime p, we can define the local components of the maximal orders $R_{i, p}=R_{i} \otimes \mathbb{Z}_{p}$ and then set $\widehat{R_{i}}=R_{i} \otimes \widehat{\mathbb{Z}}$.
- Likewise, $\widehat{\mathcal{B}}=\mathcal{B} \otimes \widehat{\mathbb{Q}}$.
- Every ideal I of R is locally principal, so $\exists g_{I, p} \in R_{p}^{\times} \backslash \mathcal{B}_{p}^{\times}$ such that $I_{p}=R_{p} g_{I, p}$.
- Then there's a bijection

$$
\begin{aligned}
\text { \{ideals of } R\} & \longleftrightarrow \widehat{R}^{\times} \backslash \widehat{\mathcal{B}}^{\times} \\
I & \longleftrightarrow g_{I}=\left(\ldots g_{I, p} \ldots\right)
\end{aligned}
$$

- Recall the equivalence relation between left ideals and get

$$
n=\# \widehat{R}^{\times} \backslash \widehat{\mathcal{B}}^{\times} / \mathcal{B}^{\times}
$$

- So choose representatives g_{i} such that

$$
\widehat{\mathcal{B}}^{\times}=\bigcup_{i=1}^{n} \widehat{R}^{\times} g_{i} \mathcal{B}^{\times}
$$

- Can recover R_{i} from g_{i} by

$$
R_{i}=\mathcal{B} \cap g_{i}^{-1} \widehat{R} g_{i}
$$

The Curve X_{N}

- Every quaternion algebra, \mathcal{C} over \mathbb{Q}, has an associated genus 0 curve $Y_{\mathcal{C}}$ where for any \mathbb{Q}-algebra, W, the W points of $Y_{\mathcal{C}}$ are given by

$$
Y_{\mathcal{C}}(W)=\left\{\alpha \in \mathcal{C} \otimes_{\mathbb{Q}} W \mid \alpha \neq 0, \operatorname{Tr} \alpha=\mathbb{N} \alpha=0\right\} / W^{\times}
$$

- Let $Y=Y_{\mathcal{B}}$ be the curve associated to \mathcal{B}. Notice \mathcal{B}^{\times}acts on (the right of) Y by conjugation.
- Then set

$$
X_{N}=\left(\widehat{R}^{\times} \backslash \widehat{\mathcal{B}}^{\times} \times Y\right) / \mathcal{B}^{\times}
$$

- Then it is more natural to think of X_{N} as

$$
\begin{aligned}
X_{N} & =\coprod_{i=1}^{n} Y / \Gamma_{i} \\
\left(\widehat{R}^{\times} g_{i}, y\right) \bmod \mathcal{B}^{\times} & \mapsto y \bmod \Gamma_{i} \text { on } X_{i}:=Y / \Gamma_{i}
\end{aligned}
$$

- Each $X_{i} \cong \mathbb{P}^{1} / \Gamma_{i}$.

$\operatorname{Pic}\left(X_{N}\right)$ and The Height Pairing

- Definitions of $\operatorname{Pic}\left(X_{N}\right)$.

1. It is the group of line bundles on X_{N}.
2. It is the group of invertible sheafs of X_{N}.
3. When X_{N} is nice, it is isomorphic to the divisor class group.

- $\operatorname{Pic}\left(X_{N}\right)=\operatorname{Pic}\left(\coprod_{i=1}^{n} X_{i}\right)=\coprod_{i=1}^{n} \operatorname{Pic}\left(X_{i}\right)$
- Each $X_{i} \cong \mathbb{P}^{1}$. And $\operatorname{Pic}\left(\mathbb{P}^{1}\right) \cong \mathbb{Z}$.
- Hence, $\operatorname{Pic}\left(X_{N}\right) \cong \mathbb{Z}^{n}$.
- So let e_{i} be the generator of $\operatorname{Pic}\left(X_{i}\right)$. Hence $\left\{e_{i}\right\}$ is a basis for $\operatorname{Pic}\left(X_{N}\right)$.
- Define the height pairing on basis elements:

$$
\left\langle e_{i}, e_{j}\right\rangle=\left\{\begin{array}{cc}
\omega_{i} & \text { if } i=j \\
0 & \text { otherwise }
\end{array}\right.
$$

and extend biadditively to all of $\operatorname{Pic}\left(X_{N}\right)$.

- $\langle\cdot, \cdot\rangle$ gives an embedding

$$
\begin{gathered}
\operatorname{Pic}\left(X_{N}\right)^{\vee}=\operatorname{Hom}\left(\operatorname{Pic}\left(X_{N}\right), \mathbb{Z}\right) \hookrightarrow \operatorname{Pic}\left(X_{N}\right) \otimes \mathbb{Q} \\
e_{i}^{\vee} \mapsto e_{i} / \omega_{i}
\end{gathered}
$$

Relationship Between X_{N} and Supersingular Elliptic Curves

Recall that an elliptic curve E / \mathbb{F}_{q} is call supersingular if $E\left(\overline{\mathbb{F}_{q}}\right)$ has no points of order $\operatorname{char}\left(\mathbb{F}_{q}\right)$.

Lemma. Let \mathbb{F} be an algebraically closed field of characteristic N and n be the class number of \mathcal{B}. Then there are n distinct isomorphism classes of supersingular elliptic curves over \mathbb{F} and furthermore

$$
\operatorname{End}\left(E_{i}\right) \cong R_{i}
$$

This sets up bijections:

$$
\begin{gathered}
\left\{\begin{array}{c}
\text { Components } \\
\text { of } X_{N}
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { Maximal } \\
\text { Orders of } \mathcal{B}
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { Supersingular } \\
\text { ECs over } \mathbb{F}
\end{array}\right\} \\
X_{i} \longleftrightarrow R_{i} \longleftrightarrow E_{i}
\end{gathered}
$$

Hecke Operators

- Want to use these associations to define a Hecke operator on $\operatorname{Pic}\left(X_{N}\right)$.

$$
t_{m}\left[E_{i}\right]:=\sum_{\lambda_{i j}}\left[E_{j}\right]
$$

where $\lambda_{i j} \in \operatorname{Hom}^{m}\left(E_{i}, E_{j}\right) / \operatorname{Aut}\left(E_{j}\right)$.

- Then use the bijections to define over the e_{i} instead of the E_{i}.
- Adjointness: For any two divisors, e and e^{\vee},

$$
\left\langle t_{m} e, e^{\vee}\right\rangle=\left\langle e, t_{m} e^{\vee}\right\rangle .
$$

- Let $\operatorname{Pic} \mathbb{Q}^{(}\left(X_{N}\right)=\operatorname{Pic}\left(X_{N}\right) \otimes \mathbb{Q}$. If we then consider $t_{m} \in \operatorname{End}\left(\operatorname{Pic}_{\mathbb{Q}}\left(X_{N}\right)\right)$ with the $\left\{e_{i}\right\}$ basis, we get the Brandt matrices $t_{m}=B(m) \in M_{n}(\mathbb{Q})$ with entries

$$
[B(m)]_{i j}=B_{i j}(m)=\# \operatorname{Hom}^{m}\left(E_{i}, E_{j}\right) / \operatorname{Aut}\left(E_{j}\right)
$$

and set $B_{i j}(0)=\frac{1}{2 \omega_{j}}$.

- In fact, $B(1)=I_{n}$ and $B(m) \in M_{n}(\mathbb{Z})$ for $m \geq 1$

The Generating Series Θ

Define

$$
\Theta=\sum_{m \geq 0} t_{m} q^{m} \in \operatorname{End}\left(\operatorname{Pic}_{\mathbb{Q}}\left(X_{N}\right)\right)[[q]]
$$

Proposition. Θ is a weight 2 modular form of level N, valued in $\operatorname{End}\left(\operatorname{Pic}_{\mathbb{Q}}\left(X_{N}\right)\right)$.

Proof. Consider

$$
\begin{aligned}
{[\Theta]_{i j} } & =\sum_{m \geq 0} B_{i j}(m) q^{m} \\
& =\frac{1}{\# \operatorname{Aut}\left(E_{j}\right)} \sum_{\phi \in \operatorname{Hom}\left(E_{i}, E_{j}\right)} q^{\operatorname{deg} \phi}
\end{aligned}
$$

If we now recall that $\operatorname{End}\left(E_{i}\right) \cong R_{i}$ then we see that

$$
\operatorname{Hom}\left(E_{i}, E_{j}\right) \cong I_{j}^{-1} I_{i} .
$$

If $\phi \mapsto b$, then $\operatorname{deg} \phi=\frac{\mathbb{N} b}{\mathbb{N}\left(I_{j}^{-1} I_{i}\right)}$. So

$$
[\Theta]_{i j}=\frac{1}{2 \omega_{j}} \sum_{b \in I_{j}^{-1} I_{i}} q^{\frac{\mathbb{N} b}{\mathbb{N}\left(I_{j}^{-1} I_{i}\right)}}
$$

This is just a standard θ-series over a lattice and hence a modular form of weight 2 .

Corollary. For any e and $e^{\vee}, \Phi\left(e, e^{\vee}\right):=\left\langle\Theta e, e^{\vee}\right\rangle$ is a \mathbb{C} valued weight 2 modular form over $\Gamma_{0}(N)$.

Next Time

- We will take a closer look at the Hecke operators t_{m} and see how they relate to the usual Hecke operators on modular forms.
- Using this relation, we will be able to define and talk about Hecke eigencomponents of $\operatorname{Pic}\left(X_{N}\right)$ and how Φ acts on them.
- Then we will define a set of points on X_{N} given by the field K and examine their properties.
- Next, we'll fix a distinguished element of $\operatorname{Pic}\left(X_{N}\right)$ and show how it allows us to rephrase the main identity.
- Lastly, we'll go over the final proof of the main identity with as many details as time allows.

Last Time

- We had a Rankin-Selberg L-series $L(f, \chi, s)$ determined by

1. A character χ of $\operatorname{Pic}\left(\mathcal{O}_{K}\right)$ where K is a quadratic imaginary field.
2. A cusp form f of level N, a prime inert in K.

And it had an even functional equation.

Theorem.

$$
L(f, \chi, 1)=\frac{1}{u^{2} \sqrt{D}}\langle f, f\rangle_{P e t}\left\langle c_{f}(\chi), c_{f}(\chi)\right\rangle
$$

where $-D=\operatorname{disc}(K), u=\#\left(\mathcal{O}_{K}^{\times} / \mathbb{Z}^{\times}\right),\langle\cdot, \cdot\rangle_{\text {Pet }}$ is the Petersson inner product, and $c_{f}(\chi)$ is an element of $\operatorname{Pic}\left(X_{N}\right)$.

- We then used the unique quaternion algebra \mathcal{B} that ramified at N and ∞ to construct the curve

$$
X_{N}=\coprod_{i=1}^{n} Y / \Gamma_{i}
$$

with $Y \cong \mathbb{P}^{1}$.

- Next, we defined a "height" pairing $\langle\cdot, \cdot\rangle$ on $\operatorname{Pic}\left(X_{N}\right)$ and Hecke operators t_{m} based on the relations between X_{N} and supersingular elliptic curves.
- Lastly, we had modular forms Θ valued in $\operatorname{End}\left(\operatorname{Pic}_{\mathbb{Q}}\left(X_{N}\right)\right)$ and Φ valued in \mathbb{C}.

Hecke Structure

- Let $\mathcal{M}_{\mathbb{Q}}$ denote the modular forms of weight 2 on $\Gamma_{0}(N)$ with rational coefficients, and let T_{m} be the standard Hecke operators on $\mathcal{M}_{\mathbb{Q}}$. Then $\mathbb{T}=\mathbb{Q}\left[\ldots T_{m} \ldots\right]$ is a subalgebra of $\operatorname{End}\left(\mathcal{M}_{\mathbb{Q}}\right)$.
- Similarly $\mathbb{B}=\mathbb{Q}\left[\ldots t_{m} \ldots\right]$ is a subalgebra of $\operatorname{End}\left(\operatorname{Pic}_{\mathbb{Q}}\left(X_{N}\right)\right)$.
- Recall $B(m)$ was the matrix for t_{m} in the $\left\{e_{i}\right\}$ basis.
- By establishing Trace $\left(T_{m}\right)=\operatorname{Trace}(B(m))$, Eichler showed that there is a ring isomorphism $\mathbb{T} \cong \mathbb{B}$ that takes $T_{m} \mapsto$ t_{m}. This leads to the following proposition and its corollary:
- Recall, we defined a generating series

$$
\Theta=\sum_{m \geq 0} t_{m} q^{m} \in \operatorname{End}\left(\operatorname{Pic}_{\mathbb{Q}}\left(X_{N}\right)\right)[[q]]
$$

and showed that it was a weight 2 modular form and that for any e and $e^{\vee}, \Phi\left(e, e^{\vee}\right):=\left\langle\Theta e, e^{\vee}\right\rangle$ is a \mathbb{C}-valued weight 2 modular form over $\Gamma_{0}(N)$.

Proposition. $\Theta \mid T_{m}=t_{m} \circ \Theta=\Theta \circ t_{m}$
Corollary. $\Phi\left(e, e^{\vee}\right) \mid T_{m}=\Phi\left(t_{m} e, e^{\vee}\right)=\Phi\left(e, t_{m} e^{\vee}\right)$

Hecke Eigencomponents

Modular Forms

- $\mathcal{M}_{\mathbb{Q}}$ is a free \mathbb{T}-module of rank 1 by the multiplicity one theorem since every eigenform in $\mathcal{M}_{\mathbb{R}}$ is a newform of level N. (Since there are no weight 2 oldforms and N is prime.)
- $f=\sum a_{m} q^{m}$ is an eigenfunction of \mathbb{T}, so $f \mid T_{m}=a_{m} f$ for each m. Set

$$
\mathcal{M}_{f}=\bigcap_{m} \operatorname{ker}\left(T_{m}-a_{m}\right)
$$

- $\mathcal{M}_{f}=\mathbb{C} f \subset \mathcal{M}_{\mathbb{C}}$ which is an n-dimensional vector space. $\operatorname{Pic}\left(X_{N}\right)$
- $\operatorname{Pic}_{\mathbb{Q}}\left(X_{N}\right)$ is a free \mathbb{B} module of rank 1.
- Since $\mathbb{T} \cong \mathbb{B}$, we get $\mathcal{M}_{\mathbb{C}} \cong \mathbb{T}_{\mathbb{C}} \cong \mathbb{B}_{\mathbb{C}} \cong \operatorname{Pic}_{\mathbb{C}}\left(X_{N}\right)$.
- Define $\operatorname{Pic}_{\mathbb{C}}\left(X_{N}\right)_{f}$ to be the corresponding 1-dimensional subspace of $\operatorname{Pic}_{\mathbb{C}}\left(X_{N}\right)$ and for a divisor e, let e_{f} to be its projection onto this f-eigencomponent.

Tautology: For any divisor $c, t_{m} c_{f}=a_{m} c_{f}$.
Φ on the f-eigencomponent

- Recall $\Phi: \operatorname{Pic}\left(X_{N}\right) \times \operatorname{Pic}\left(X_{N}\right) \rightarrow \mathcal{M}$ defined by

$$
\Phi\left(c, c^{\prime}\right)=\left\langle\Theta c, c^{\prime}\right\rangle
$$

- Consider

$$
\begin{aligned}
\Phi\left(c_{f}, c_{f}^{\prime}\right) & =\left\langle\Theta c_{f}, c_{f}^{\prime}\right\rangle \\
& =\left\langle\left(\sum t_{m} q^{m}\right) c_{f}, c_{f}^{\prime}\right\rangle \\
& =\left\langle\left(\sum a_{m} q^{m}\right) c_{f}, c_{f}^{\prime}\right\rangle \\
& =f \cdot\left\langle c_{f}, c_{f}^{\prime}\right\rangle
\end{aligned}
$$

Therefore $\left\langle f, \Phi\left(c_{f}, c_{f}^{\prime}\right)\right\rangle_{\text {Pet }}=\langle f, f\rangle_{\text {Pet }} \cdot\left\langle c_{f}, c_{f}^{\prime}\right\rangle$.

- Since $\Phi\left(t_{m} c, c^{\prime}\right)=\Phi\left(c, c^{\prime}\right) \mid T_{m}$ and $\left\langle c_{f}, c^{\prime}\right\rangle=\left\langle c_{f}, c_{f}^{\prime}\right\rangle$, then

$$
\begin{aligned}
& \Phi\left(c_{f}, c_{f}^{\prime}\right)=\Phi\left(c, c^{\prime}\right)_{f} \\
& \Longrightarrow\left\langle f, \Phi\left(c, c^{\prime}\right)\right\rangle_{\mathrm{Pet}}=\left\langle f, \Phi\left(c_{f}, c_{f}^{\prime}\right)\right\rangle_{\mathrm{Pet}} \\
&=\langle f, f\rangle_{\mathrm{Pet}} \cdot\left\langle c_{f}, c_{f}^{\prime}\right\rangle \\
&\left\langle f, \Phi\left(c, c^{\prime}\right)\right\rangle_{\mathrm{Pet}}=\langle f, f\rangle_{\mathrm{Pet}} \cdot\left\langle c_{f}, c_{f}^{\prime}\right\rangle
\end{aligned}
$$

Special Points and Fine Structure of X_{N}

- Recall

$$
\begin{gathered}
X_{N}=\coprod_{i=1}^{n} Y / \Gamma_{i}=\left(\widehat{R}^{\times} \backslash \widehat{\mathcal{B}}^{\times} \times Y\right) / \mathcal{B}^{\times} \\
Y(K)=\{\alpha \in \mathcal{B} \otimes K \mid \alpha \neq 0, \operatorname{Tr} \alpha=\mathbb{N} \alpha=0\} / K^{\times} .
\end{gathered}
$$

- Let the special points be defined as

$$
X_{N}(K):=\left(\widehat{R}^{\times} \backslash \widehat{\mathcal{B}}^{\times} \times Y(K)\right) / \mathcal{B}^{\times}
$$

- There is an identification $\operatorname{Hom}(K, \mathcal{B})=Y(K)$ by $\rho \mapsto \alpha \in Y(K)$ such that $\forall k \in K^{\times}, \rho(k)^{-1} \alpha \rho(k)=\alpha \rho(k / \bar{k})$
- Under this identification, the \mathcal{B}^{\times}action becomes conjugation, $(\rho \cdot b)(k):=b^{-1} \rho(k) b$.
- Let $x=\left(h, y_{\rho}\right) \bmod \mathcal{B}^{\times} \in X_{N}(K)$, where $\rho: K \hookrightarrow \mathcal{B}$. We then define the discriminant as $\operatorname{disc}(x):=\operatorname{disc}(\mathcal{O})$ where $\rho(K) \cap h^{-1} \widehat{R} h=\rho(\mathcal{O})$ for some order $\mathcal{O} \subset K$.
- Let $X_{N}(K, \mathcal{O})=\left\{x \in X_{N}(K) \mid \operatorname{disc}(x)=\operatorname{disc}(\mathcal{O})\right\}$. Then we can make the following decomposition:

$$
X_{N}(K)=\bigcup_{\mathcal{O} \subset K} X_{N}(K, \mathcal{O})
$$

- We also get a (non-obvious) transitive action of $\operatorname{Pic}(\mathcal{O})$ on $X_{N}(K, \mathcal{O})$ which we will denote by $x \mapsto x_{A}$.

The Distinguished Divisor

- Recall the main theorem we are trying to prove is

$$
L(f, \chi, 1)=\frac{1}{u^{2} \sqrt{D}}\langle f, f\rangle_{\operatorname{Pet}}\left\langle c_{f}(\chi), c_{f}(\chi)\right\rangle .
$$

- Fix a special point $x \in X_{N}$ of discriminant D. Define

$$
c(\chi)=\sum_{A \in \operatorname{Pic}\left(\mathcal{O}_{K}\right)} \chi(A)^{-1} x_{A}
$$

and let $c_{f}(\chi)$ be its f-component.

- From what we've shown previously then

$$
\langle f, f\rangle_{\mathrm{Pet}}\left\langle c_{f}(\chi), c_{f}(\chi)\right\rangle=\langle f, \Phi(c(\chi), c(\chi))\rangle_{\mathrm{Pet}}
$$

- So the identity to be shown is

$$
L(f, \chi, 1)=\frac{1}{u^{2} \sqrt{D}}\langle f, \Phi(c(\chi), c(\chi))\rangle_{\mathrm{Pet}} .
$$

- Rankin and Selberg, through analytic methods, also give us $L(f, \chi, 1)$ as a Petersson inner product.

Eliminating χ Dependence

- Putting in our distinguished divisor $c(\chi)$ yields

$$
\begin{aligned}
\langle f, \Phi(c(\chi), c(\chi))\rangle_{\mathrm{Pet}} & =\left\langle f, \sum_{A, B \in \operatorname{Pic}\left(\mathcal{O}_{K}\right)} \chi(A)^{-1} \chi(B) \Phi\left(x_{A}, x_{B}\right)\right\rangle_{\mathrm{Pet}} \\
& =\left\langle f, \sum_{A} \chi(A) \sum_{B} \Phi\left(x_{B}, x_{A B}\right)\right\rangle_{\mathrm{Pet}} \\
& =\sum_{A} \chi(A)\left\langle f, \sum_{B} \Phi\left(x_{B}, x_{A B}\right)\right\rangle_{\mathrm{Pet}}
\end{aligned}
$$

- Likewise,

$$
L(f, \chi, s)=\sum_{A} \chi(A) L(f, A, s)
$$

where

$$
L(f, A, s)=\left[\sum_{\substack{(m, N)=1 \\ m \geq 1}} \frac{\epsilon(m)}{m^{2 s-1}}\right]\left[\sum_{m \geq 1} \frac{a_{m} r_{A}(m)}{m^{s}}\right]
$$

$\epsilon(m)=\left(\frac{-D}{m}\right)$ and the $r_{A}(m)$ are given by fixing an ideal \mathfrak{a} in the ideal class A and setting

$$
\theta_{A}(z)=\frac{1}{2 u} \sum_{\lambda \in \mathfrak{a}} q^{\mathbb{N} \lambda / \mathbb{N a}}=\frac{1}{2 u} \sum_{m \geq 0} r_{A}(m) q^{m}
$$

- So the main theorem is now equivalent to showing

$$
L(f, A, 1)=\frac{1}{u^{2} \sqrt{D}}\left\langle f, \sum_{B} \Phi\left(x_{B}, x_{A B}\right)\right\rangle_{\mathrm{Pet}}
$$

Method to Prove Main Theoreom

1. Use Rankin-Selberg to obtain $L(f, A, 1)$ as a Petersson inner product of f with a modular form constructed from an Eisenstein series. Then perform a trace computation to compute the Fourier coefficients of this form.
2. Compute Fourier coefficients of $\sum_{B} \Phi\left(x_{B}, x_{A B}\right)$ using algebraic/geometric properties.
3. Compare.

Rankin-Selberg Method

- Define a new Eisenstein series

$$
E_{N D}(s, z)=\sum_{\substack{(m, N)=1 \\ m \geq 1}} \frac{\epsilon(m)}{m^{2 s-1}} \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma_{0}(N D)} \frac{\epsilon(d)}{(c z+d)} \frac{y^{s}}{|c z+d|^{2 s}}
$$

- $E_{N D}(s, z)$ is a weight 1 modular form of level $N D$ with character ϵ.
- Then standard integration techniques developed by Rankin and Selberg give

$$
(4 \pi)^{-s} \Gamma(s) L(f, A, s)=\iint_{\mathcal{F}_{N D}} f(z) \overline{\theta_{A}(z) E_{N D}(\bar{s}-1, z)} d x d y
$$

- Therefore at $s=1$ we get

$$
\frac{1}{4 \pi} L(f, A, 1)=\left\langle f, \theta_{A} E_{N D}(0, z)\right\rangle_{\mathrm{Pet}}
$$

- Now the main theorem can be further reduced to showing

$$
\left\langle f, \theta_{A} E_{N D}(0, z)\right\rangle_{\mathrm{Pet}}=\frac{4 \pi}{u^{2} \sqrt{D}}\left\langle f, \sum_{B} \Phi\left(x_{B}, x_{A B}\right)\right\rangle_{\mathrm{Pet}}
$$

- We can do so by showing the stronger statement

$$
\theta_{A} E_{N D}(0, z)=\frac{4 \pi}{u^{2} \sqrt{D}} \sum_{B} \Phi\left(x_{B}, x_{A B}\right)
$$

(for a specific $x \in X_{N}$) by computing Fourier coefficients of each.

The Fourier Coefficients of $\sum_{B} \Phi\left(x_{B}, x_{A B}\right)$

$$
\begin{aligned}
\Phi\left(x_{B}, x_{A B}\right) & =\left\langle\Theta x_{B}, x_{A B}\right\rangle \\
& =\sum_{m}\left\langle t_{m} x_{B}, x_{A B}\right\rangle q^{m}
\end{aligned}
$$

So we need to compute $\left\langle t_{m} x_{B}, x_{A B}\right\rangle=\left\langle x_{B}, t_{m} x_{A B}\right\rangle$.

- Recall we had the associations $X_{i} \longleftrightarrow R_{i} \longleftrightarrow E_{i}$.
- Then $\left\langle x_{B}, t_{m} x_{A B}\right\rangle=\frac{1}{2} \# \operatorname{Hom}^{m}\left(E_{B}, E_{A B}\right)$ where E_{B} denotes the supersingular elliptic curve corresponding to x_{B}.
- Consider $\mathcal{B}=K+K \eta$ where $\eta^{2}=-N$ and $\eta \alpha=\bar{\alpha} \eta$ $\forall \alpha \in K$. Let $\mathcal{D}=(\sqrt{-D})$ be the different of \mathcal{O}_{K}. Let $\varepsilon^{2} \equiv-N \bmod D$.
- A theorem proved in a paper by one of Gross's students then states we can chose $x \in X_{N}$ such that

$$
\operatorname{End}\left(E_{x}\right)=\left\{\alpha+\beta \eta \mid \alpha, \beta \in \mathcal{D}^{-1}, \alpha \equiv \varepsilon \beta \bmod \mathcal{O}_{\mathcal{D}}\right\}
$$

where $\mathcal{O}_{\mathcal{D}}$ is \mathcal{O}_{K} localized at the prime \mathcal{D}.
Note. x may actually be chosen as an arbitrary special point on X_{N} with discriminant D. This changes $\Phi\left(x_{B}, x_{A B}\right)$ by an oldform. Since we're taking the Petersson inner product with f, a newform, this doesn't affect the overall calculation.

The Fourier Coefficients of $\sum_{B} \Phi\left(x_{B}, x_{A B}\right)$, cont.

- Fix \mathfrak{a} and \mathfrak{b} ideals in the classes of A and B with \mathfrak{a} and \mathfrak{b} relatively prime to \mathcal{D}. Then the above lets us form a bijection between $\operatorname{Hom}\left(E_{B}, E_{A B}\right)$ and the set
$\left\{\alpha+\beta \eta \mid \alpha \in \mathcal{D}^{-1} \mathfrak{a}, \beta \in \mathcal{D}^{-1} \mathfrak{b}^{-1} \overline{\mathfrak{b}} \overline{\mathfrak{a}}, \alpha \equiv \varepsilon \beta \bmod \mathcal{O}_{\mathcal{D}}\right\}$
such that $\operatorname{deg}(\phi) \longleftrightarrow(\mathbb{N} \alpha+N \mathbb{N} \beta) / \mathbb{N a}$.
- We want to count the number of solutions to $\mathbb{N} \alpha+N \mathbb{N} \beta=$ $m \mathbb{N a}$ with α, β as above.
- Recall $r_{A}(m)=\#\{\lambda \in \mathfrak{a}$ in the class $A \mid \mathbb{N} \lambda=m \mathbb{N a}\}$.
- Set $\delta(n)=\#$ of primes dividing both n and D. Then our Fourier coefficients are

$$
\left\langle x_{B}, t_{m} x_{A B}\right\rangle=u^{2} \sum_{n=0}^{m D / N} r_{A^{-1}}(m D-n N) 2^{\delta(n)} r_{A B^{2}}(n)
$$

- These coefficients are the same as those arrived at through the Rankin-Selberg method up to the outside constant $\frac{4 \pi}{u^{2} \sqrt{D}}$.
- Hence,

$$
\left\langle f, \theta_{A} E_{N D}(0, z)\right\rangle_{\mathrm{Pet}}=\frac{4 \pi}{u^{2} \sqrt{D}}\left\langle f, \sum_{B} \Phi\left(x_{B}, x_{A B}\right)\right\rangle_{\mathrm{Pet}}
$$

and now the main theorem follows.

