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 Imagine you’re at a picnic.  You’ve brought along, for whatever reasons, a coffee 

cup, a doughnut, a pumpkin, and a Klein bottle someone tried (and failed) to fill with 

lemonade.  Imagine, now, that an ant or two has stumbled across your pastoral feast, and 

starts to crawl here and there over your various items.  Clearly, to our eyes, a coffee cup 

and a pumpkin are not terribly similar.  What might they look like to the ant, though?  

The ant can’t see the cup, the pumpkin, the doughnut, or the bottle all at once.  It can only 

see tiny sections of them at a time, and, assuming our ant is colorblind, they all look more 

or less alike.  The facts that two have holes in them and that one has only one side are 

invisible at this scale. The ant probably sees itself as hiking along a more or less flat and 

featureless plain.  It’s this same principle that led people to suppose, once upon a time, 

that the world was flat.  On our small personal scale, the Earth, like the cup, the 

doughnut, the pumpkin, and the bottle to the ant, looks flat to us.  A manifold, in general 

though vague terms, is a topological space that shares this property.  On a small enough 

scale, it looks “flat” i.e. it behaves like Euclidean space. 

 More precisely, an m-manifold is a very well-behaved class of topological space, 

which is Hausdorff, second countable, and locally m-Euclidean. That is, for every point x 

of our manifold X, there exists a neighborhood of x which is homeomorphic to an open 

set in mℜ .  The most obvious example of a manifold is mℜ  itself, of course.  Spheres, 

like our pumpkin, are another example: 2S  is a 2-manifold.  So are tori, like the 

doughnut, or in fact the coffee cup.  The Klein bottle is another 2-manifold.  For any n, a 
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more abstract example of a manifold is the matrix group ( )ℜ,nSL , which is an ( )12 −n -

manifold. 

 Manifolds inherit a great many desirable topological properties from Euc lidean 

space.  In addition to being Hausdorff and second countable by definition, they are 

locally compact, locally path-connected, and regular.  By the Urysohn metrization 

theorem, they are also metrizable. Munkres also shows with his Theorems 32.2 and 41.4 

that manifolds are normal and paracompact.  A space is paracompact if given any open 

covering of the space, one can find a refinement of the covering such that every point in 

the space lies in only finitely many elements of the refinement.  Manifolds need not be 

compact, but they’re the next best things. 

 It should come as very little surprise, given these properties, that any m-manifold 

can be embedded into Nℜ  for some finite N.  In fact, the necessary value of N is at most 

12 +m . However, proving this and proving that a general manifold is embeddable are 

tricky.  The special case of compact manifolds, with some unspecified N, is considerably 

easier and uses the idea of a partition of unity.  Given a finite collection of open sets 

NUUU ,,, 21 K  in a space X, a partition of unity dominated by { }iU  is a family of 

functions [ ]1,0: →φ Xi  such that each iφ  is 0 outside of iU , and, at every point x of X, 

( ) 1
1

=φ∑
=

N

i
i x .  Now suppose X is a compact manifold.  Then we can take as our { }iU  a 

finite open cover for X, for which each iU  is homeomorphic to an open set of mℜ . Then 

there exist embeddings m
ii Ug ℜ→:  for each i.  Let Nφφφ ,,, 21 K  be a partition of unity 

dominated by the iU .  Define ( ) ( ) ( )xxgxh iii φ=  on iU , and ( )0,,0,0 K  on the 

complement of the support of iφ . Recall that the support of a function ℜ→γ X:  is the 
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closure of the set { }( )01 −ℜγ− .  Then the function ( ) ( ) ( ) ( ) ( )( )xhxhxxxF N 211 ,,,, KK φφ=  

is an embedding of X in the outrageously large space ( )1+ℜ mn . 

 To improve our embedding theorem and squeeze a compact manifold into a 

potentially much smaller Euclidean space, it is helpful to introduce the idea of topological 

dimension.  There are several possible ways to define the dimension of a topological 

space. Many agree with our intuitive algebraic understanding of dimension, which tells us 

that mℜ  ought to have dimension m.  One of the more intuitive definitions is due to 

Menger and Urysohn. It proceeds recursively as follows: First, the empty set and only the 

empty set is declared to have dimension –1. Then for any other topological space X, the 

dimension of X, denoted Xdim , has nX ≤dim  if there is a basis for its topology, Β , 

such that, for every Β∈B , 1bndy −≤ nB . Recall that Abndy , the boundary of a set A, 

is defined by ( )AXAA −∩=bndy .  Conventionally, Xdim is said to equal the least n 

for which this holds.   

For example, a discrete space has dimension 0, as we can use as a basis all the 

one-point subsets, which have empty boundary.  Likewise, the set of irrational numbers is 

also 0-dimensional:  any neighborhood of an irrational point p contains an interval with 

rational endpoints, which has no boundary.  Also, ℜ , which has as a basis the open 

intervals whose boundaries are discrete pairs of points, can have dimension no greater 

than 1, and in fact 1dim =ℜ , just as expected.  The proof that nn ≤ℜdim  is a matter of 

induction, whereas the proof that nn =ℜdim  exactly is decidedly nontrivial.   

One can go on to prove that, in separable metrizable spaces, a subspace cannot 

have higher dimension than its mother space, and thence that compact manifolds, which 

can be expressed as finite unions of open sets which have dimension no more than m, 
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have dimension no more than m.  Using some function space theory, Hurewicz and 

Wallman prove as their Theorem V2 that any compact m-manifold can be embedded in 

12 +ℜ m . 

 It is possible to prove a more general embedding theorem that does not rely on 

metrizability but on local compactness. Thus, this embedding theorem is still perfectly 

applicable to manifolds.  Munkres presents this as Exercise 6 of §50, and it utilizes the 

Lebesgue definition of topological dimension.  Although less intuitive than Menger’s and 

Urysohn’s, Lebesgue's definition of topological dimension is standard. In addition, since 

the Lebesgue and the Menger and Urysohn ideas of dimension agree on compact spaces, 

all of our previous results from Hurewicz and Wallman still hold. Lebesgue's notion of 

dimension is as follows:  First, a collection of subsets of a space X is said to have order 

1+m  if there is a point of X that lies in 1+m  elements of the collection, but no point lies 

in more than 1+m .  A space X  is then said to be finite-dimensional if there is some 

integer m such that any open covering of X can be refined into an open covering with 

order at most 1+m .  The least integer m for which this holds is then the dimension of X.   

Again, a discrete space has dimension 0 since any open covering can be refined 

into the collection of one-point subsets; every point lies in one and only one element of 

this covering, so the dimension of the space is at most 0, hence exactly 0.  Also, given 

any open covering of the real line, we may easily construct a refinement such that no 

more than two covering sets intersect at any given point, and thus ℜ  can have dimension 

no more than 1.   

Now, consider any compact subset A of a general m-manifold X.  A can be 

covered by finitely many open sets kUUU ,,, 21 K  homeomorphic to open sets in mℜ .  A 
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is a union of closed subsets homeomorphic to closed subsets of mℜ , which must have 

dimension less than or equal to m, and therefore A itself has dimension less than or equal 

to m.  This segues nicely into a theorem given as an exercise in Munkres that states: any 

locally compact second countable Hausdorff space, such that every compact subspace has 

dimension less than or equal to m, is homeomorphic to a closed subset of 12 +ℜ m .  The 

proof of this relies on some of the theory of function spaces, similar in some respects to 

the proof for compact spaces given in Hurewicz and Wallman.  The basic idea is to 

consider ( )12, +ℜ mXC  under the uniform metric, and show that it has a dense subset with 

certain properties.  The interested party may pursue this further.  It follows soon 

thereafter that an m-manifold cannot have dimension greater than m. Though it has 

dimension precisely m, as one would expect, actually proving this definite result is a 

difficult task involving algebraic topology well beyond the scope of this brief document. 

 Though this theorem yields an upper bound on how many dimensions a Euclidean 

space must have to contain a homeomorphic copy of a given manifold, it does not offer a 

lower bound.  Consider 2-manifolds, for example.  The sphere and the torus—our 

pumpkin and doughnut—both exist happily as subspaces of 3ℜ , as opposed to the 

suggested 5ℜ .  Our one-sided Klein bottle, also a 2-manifold, can be embedded in 4ℜ .  

The projective plane, homeomorphic to the space of all lines through the origin in 3ℜ  

and to the quotient space obtained from 2S  by identifying pairs of antipodal points is 

also a 2-manifold that can be embedded in 4ℜ . (Though it did not, alas, appear at our 

hypothetical picnic.)  The ( )12 −n  -manifold ( )ℜ,nSL  obtains its topology when 

considered as a space of 2n -vectors, making it a subspace of 
2nℜ . However, it can be 
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trivially embedded in a Euclidean space with dimension only one greater than its own.  

mℜ , the prototypical m-manifold, requires no embedding at all.   

The embedding theorems mentioned here show that any m-manifold can be 

embedded in a finite-dimensional Euclidean space, while they do not by any means 

suggest the best possible embedding.  The last embedding theorem can not in general be 

refined any further, since there are m-manifolds, though rare and exotic, which cannot be 

embedded in Nℜ  for any 12 +< mN . 
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