Eric Errthum MATH 730 Final

1. Let G, H be topological groups that are path-connected and semi-locally 1-connected.
(a) Assume that N is a discrete normal subgroup of G. Show that N lies in the center of G.

For a topological group, the group action is a continuous function. Therefore, for every $n \in N$ the function $f_{n}(g)=g n g^{-1} n^{-1}$ is a continuous function from $G \rightarrow N$ (since N is normal). As N is a discrete space and G is path-connected and thus connected, f_{n} is constant. If we let e denote the identity element of G, then $f_{n}(e)=e$ for every n. Therefore $g n g^{-1} n^{-1}=e$ for every $g \in G$ and every $n \in N$. Therefore $N \subset Z(G)$.
(b) Let $f: G \rightarrow H$ be a homomorphism which is also a covering map. Show the kernel of f is abelian.

Since f is a homomorphism $\operatorname{Ker}(f) \triangleleft G$. Also, f is a covering map, so $\operatorname{Ker}(f)=f^{-1}(e)$ is a discrete set of points (as it is the fiber at e). Therefore $\operatorname{Ker}(f)$ is a discrete normal subgroup of G. So by part (a), $\operatorname{Ker}(f) \subset Z(G)$. Thus if $a \in \operatorname{Ker}(f)$ and $b \in \operatorname{Ker}(f) \subset G$ then $b a b^{-1} a^{-1}=e \Rightarrow b a=a b$. Therefore $\operatorname{Ker}(f)$ is abelian.
(c) Show that the fundamental group of H is abelian.

Let f and g be arbitrary elements of $\pi_{1}(H, e)$. Then $f, g:(I, \partial I) \rightarrow(G, e)$. Let $f * g$ represent the group action in $\pi_{1}(H, e)$, i.e.

$$
f * g(t)= \begin{cases}f(2 t) & 0 \leq t \leq 1 / 2 \\ g(2 t-1) & 1 / 2 \leq t \leq 1\end{cases}
$$

Also, let adjacency represent the group action of H so that $f g(t)=f(t) g(t)$.
Then there exists a homotopy $\mathbf{H}_{f g}: f * g \approx f g$, rel ∂I given by:

$$
\mathbf{H}_{f g}(t, s)=\left\{\begin{array}{ll}
f\left(\frac{2 t}{1+s}\right) & 0 \leq t \leq \frac{1-s}{2} \\
f\left(\frac{2 t}{1+s}\right) g\left(\frac{2 t-1+s}{1+s}\right) & \frac{1-s}{2} \leq t \leq \frac{1+s}{2} \\
g\left(\frac{2 t-1+s}{1+s}\right) & \frac{1+s}{2} \leq t \leq 1
\end{array} .\right.
$$

To verify this, we need to check that it is well defined and satisfies the boundary conditions.

Well-Defined: For $t=\frac{1-s}{2}$ we get

$$
\begin{aligned}
\mathbf{H}_{f g}(t, s) & =f\left(\frac{2 t}{1+s}\right) g\left(\frac{2 t-1+s}{1+s}\right) \\
& =f\left(\frac{2 t}{1+s}\right) g\left(\frac{1-s-1+s}{1+s}\right) \\
& =f\left(\frac{2 t}{1+s}\right) g(0) \\
& =f\left(\frac{2 t}{1+s}\right) \\
& =f\left(\frac{2 t}{1+s}\right)
\end{aligned}
$$

For $t=\frac{1+s}{2}$ we get

$$
\begin{aligned}
\mathbf{H}_{f g}(t, s) & =f\left(\frac{2 t}{1+s}\right) g\left(\frac{2 t-1+s}{1+s}\right) \\
& =f\left(\frac{1+s}{1+s}\right) g\left(\frac{2 t-1+s}{1+s}\right) \\
& =f(1) g\left(\frac{2 t-1+s}{1+s}\right) \\
& =e g\left(\frac{2 t-1+s}{1+s}\right) \\
& =g\left(\frac{2 t-1+s}{1+s}\right)
\end{aligned}
$$

Thus our homotopy is well-defined.

Boundary Conditions:

$$
\mathbf{H}_{f g}(t, 0)= \begin{cases}f(2 t) & 0 \leq t \leq 1 / 2 \\ e & t=1 / 2 \\ g(2 t-1) & 1 / 2 \leq t \leq 1\end{cases}
$$

which equals $f * g(t)$. Since $f(1)=g(0)=e$.

$$
\mathbf{H}_{f g}(t, 1)= \begin{cases}f(0)=e & t=0 \\ f(t) g(t) & 0 \leq t \leq 1 \\ g(1)=e & t=1\end{cases}
$$

which equals $f g(t)$. Finally, on ∂I we have $\mathbf{H}_{f g}(0, s)=f(0)=e$ and $\mathbf{H}_{f g}(1, s)=g(1)=e$ for every s. Therefore $\mathbf{H}_{f g}: f * g \approx f g$, rel ∂I.

There also exists the homotopy $\tilde{\mathbf{H}}: f g \approx g f, \operatorname{rel} \partial I$ given by $\tilde{\mathbf{H}}(t, s)=[f(s t)]^{-1} f(t) g(t) f(s t)$. A quick check shows $\tilde{\mathbf{H}}(t, 0)=f(t) g(t)$, $\tilde{\mathbf{H}}(t, 1)=g(t) f(t), \quad \tilde{\mathbf{H}}(0, s)=e, \quad$ and $\quad \tilde{\mathbf{H}}(1, s)=e \quad$ Therefore the homotopy $\mathbf{H}_{g f}^{-1} \tilde{\mathbf{H}} \mathbf{H}_{f g}: f * g \approx g * f, \operatorname{rel} \partial I$ and thus $f * g$ and $g * f$ are in the same homotopy class $\Rightarrow \pi_{1}(H, e)$ is abelian. Since H is path-connected, the base point is arbitrary and so, in the most general sense, the fundamental group of H is abelian.
2. If $p: X \rightarrow Y$ is a covering map, and $\varphi: X \rightarrow X$ is a map such that $p \circ \varphi=p$, then φ is a homeomorphism.

Fix $x_{0} \in X$ and set $y_{0}=p\left(x_{0}\right)$. Since $p \circ \varphi=p$, then $p\left(\varphi\left(x_{0}\right)\right)=y_{0}$ and $p_{\#} \pi_{1}\left(X, \varphi\left(x_{0}\right)\right) \subset p_{\#} \pi_{1}\left(X, x_{0}\right)$ (also note that X is path-connected and locally path-connected since it is a covering space). Therefore, by the Lifting Theorem, there exists a unique continuous map $\gamma:\left(X, \varphi\left(x_{0}\right)\right) \rightarrow\left(X, x_{0}\right)$ such that $p \circ \gamma=p$.

Claim: $\gamma=\varphi^{-1}$.

Since $\quad p_{\#} \pi_{1}\left(X, x_{0}\right) \subset p_{\#} \pi_{1}\left(X, x_{0}\right)$, by the Lifting Theorem there exists a unique $g:\left(X, x_{0}\right) \rightarrow\left(X, x_{0}\right)$ such that $p \circ g=p$. The obvious choice is $g=i d_{X}$. However, $(\gamma \circ \varphi)\left(x_{0}\right)=\gamma\left(\varphi\left(x_{0}\right)\right)=x_{0}$ and $p \circ(\gamma \circ \varphi)=$
 $(p \circ \gamma) \circ \varphi=p \circ \varphi=p$. Therefore, by the uniqueness in the Lifting Theorem, $\gamma \circ \varphi=i d_{X}$. Now, since $\quad p \circ \gamma=p$, then $\quad p\left(\gamma\left(x_{0}\right)\right)=y_{0} \quad$ and $p_{\#} \pi_{1}\left(X, \gamma\left(x_{0}\right)\right) \subset p_{\#} \pi_{1}\left(X, x_{0}\right)$. Therefore, by the Lifting Theorem, there exists a unique $h:\left(X, \gamma\left(x_{0}\right)\right) \rightarrow\left(X, x_{0}\right) \quad$ such that $\quad p \circ h=p$. But now, again, $(h \circ \gamma)\left(x_{0}\right)=x_{0}$ and $p \circ(h \circ \gamma)=p$.
 Thus, $h \circ \gamma=g=i d_{x}$. Finally, $h=h \circ(\gamma \circ \varphi)=(h \circ \gamma) \circ \varphi=\varphi$. Therefore $h=\varphi$, and $\varphi \circ \gamma=i d_{x}$. Thus $\gamma=\varphi^{-1}$ and is continuous and so φ is a homeomorphism.
3. Let $\gamma: \mathrm{R} \rightarrow \mathrm{R}^{2}$ be a smooth curve in the plane. Let K be the set of all $r \in \mathrm{R}$ such that the circle of radius r (centered at a fixed point) is tangent to γ at some point. Show that K has empty interior.

Without loss of generality, let the center of our circles be the origin. Let $h(t)=\operatorname{dist}_{\mathrm{R}^{2}}(\gamma(t),(0,0))=\sqrt{\left(\gamma_{1}(t)\right)^{2}+\left(\gamma_{2}(t)\right)^{2}} \quad$ where $\quad\left(\gamma_{1}(t), \gamma_{2}(t)\right)=\gamma(t)$. Since the distance function is a smooth map and so is γ, then $h: \mathrm{R} \rightarrow \mathrm{R}$ is a smooth map and $h_{*}(t)=\frac{d}{d t} h(t)=\frac{\gamma_{1}(t) \gamma_{1}^{\prime}(t)+\gamma_{2}(t) \gamma_{2}^{\prime}(t)}{h(t)}$. Now suppose that γ was tangent to the circle of radius R at $t=t_{0}$. Then the vector $\left(\gamma_{1}\left(t_{0}\right), \gamma_{2}\left(t_{0}\right)\right)$ would be perpendicular to the vector $\left(\gamma_{1}^{\prime}\left(t_{0}\right), \gamma_{2}^{\prime}\left(t_{0}\right)\right)$. Thus

$$
\left(\gamma_{1}\left(t_{0}\right), \gamma_{2}\left(t_{0}\right)\right) \cdot\left(\gamma_{1}^{\prime}\left(t_{0}\right), \gamma_{2}^{\prime}\left(t_{0}\right)\right)=\gamma_{1}\left(t_{0}\right) \gamma_{1}^{\prime}\left(t_{0}\right)+\gamma_{2}\left(t_{0}\right) \gamma_{2}^{\prime}\left(t_{0}\right)=0 .
$$

Therefore $h_{*}\left(t_{0}\right)=0$ making t_{0} a critical point of h and R a critical value. Thus $K \subset\{$ critical values of $h\}$. Therefore, by Sard's Theorem, K has measure zero which directly implies that K has no interior.
4.(a) Prove that a completely regular space is regular.

Let $x \in X$ and $C \subset X$ closed with $x \notin C$. Then, since X is completely regular, there exists $f: X \rightarrow[0,1]$ such that $f(x)=0$ and $f(C)=\{1\}$. Let $U=f^{-1}([0,1 / 2))$ and $V=f^{-1}((1 / 2,1])$. Then $x \in U, C \subset V$ and $U \cap V=\phi$ since if $y \in U \cap V$ then $1 / 2<f(y)<1 / 2 . \Rightarrow \Leftarrow$. Also U and V are open sets since they are the inverses of open sets through a continuous function. Therefore, for every $x \in X$ and $C \subset X$ closed with $x \notin C$, there exists open sets U and V such that $x \in U, C \subset V$ and $U \cap V=\phi$. Thus X is regular.
(b) Let X be completely regular, K a compact subspace, and U an open neighborhood of K. Prove that there exists a map $f: X \rightarrow[0,1]$ such that $f(K)=\{0\}$ and $f(X-U)=\{1\}$.

Since X is completely regular and $X-U$ is closed, for every $x \in K$ there exists $f_{x}: X \rightarrow[0,1]$ such that $f_{x}(x)=0$ and $f_{x}(X-U)=\{1\}$. Let $U_{x}=f_{x}^{-1}([0,1 / 2)) \cap U$. Since it is the intersection of two open sets, U_{x} is an open set containing x. Therefore the collection $\left\{U_{x}\right\}_{x \in K}$ is an open cover of K. Since K is compact, there exists a finite subcover $\left\{U_{x_{1}}, U_{x_{2}}, \ldots, U_{x_{n}}\right\}$ such that $K \subset \bigcup_{i=1}^{n} U_{x_{i}} \subset U$. Now create the continuous function $g(x)=\frac{1}{n} \sum_{i=1}^{n} f_{x_{i}}(x)$. If $x \in X-U$, then $g(x)=1$. If $x \in K$, then there exists x_{j} such that $x \in U_{x_{j}}$ thus

$$
\begin{aligned}
g(x) & =\frac{1}{n}\left(f_{x_{j}}(x)+\sum_{\substack{1 \leq i \leq n \\
i \neq j}} f_{x_{i}}(x)\right) \\
& <\frac{1}{n}(1 / 2+(n-1)) \\
& =1-\frac{1}{2 n} .
\end{aligned}
$$

Let $m \in\left(1-\frac{1}{2 n}, 1\right)$. Then $g(x)<m$ for every $x \in K$ and $g(x)=1$ for every $x \in X-U$. Now let $h: \mathrm{R} \rightarrow \mathrm{R}$ by setting

$$
h(x)= \begin{cases}0 & 0 \leq x \leq m \\ \frac{x-m}{1-m} & m \leq x \leq 1\end{cases}
$$

h is continuous and thus so is $f=h \circ g: X \rightarrow[0,1]$. But now for every $x \in K$, $f(x)=0$, and for every $x \in X-U, f(x)=1$.
5. Let $p: \mathrm{R} P^{n} \rightarrow X$ be a covering map. What are the possible values of the Euler characteristic $\chi(X)$. Give examples of all possibilities.
S^{n} is a double cover of $\mathrm{R} P^{n}$, therefore $\chi\left(S^{n}\right)=2 \chi\left(\mathrm{R} P^{n}\right)$.
Lemma: $\quad \chi\left(S^{n}\right)=1+(-1)^{n}$.
Proof: For $n>0$, the simplicial complex that minimally represents S^{n} is a collection of $(n+2)$ vertices such that they do not lie in the same $n \mathrm{D}$ hyperplane along with every possible edge, face, 3-simplex, \ldots, and $(n+1)-$ simplex. Thus, the number of m-simplicies is the binomial coefficient $\binom{n+2}{m+1}$. This yields $\chi\left(S^{n}\right)=\sum_{i=0}^{n}(-1)^{i}\left(\frac{n+2}{i+1}\right)$ which shall now be shown (via induction) to be equal to $1+(-1)^{n}$. The base case is obvious: $\chi\left(S^{1}\right)=3-3=0=1+(-1)^{1}$.

Now suppose that $\sum_{i=0}^{n}(-1)^{i}\left(\frac{n+2}{i+1}\right)=1+(-1)^{n}$ and consider

$$
\begin{aligned}
\chi\left(S^{n+1}\right) & =\sum_{i=0}^{n+1}(-1)^{i}\binom{n+3}{i+1} \\
& \left.=\sum_{i=0}^{n+1}(-1)^{i}\left[\begin{array}{c}
n+2 \\
i
\end{array}\right)+\binom{n+2}{i+1}\right] \\
& =\sum_{i=0}^{n+1}(-1)^{i}\binom{n+2}{i}+\sum_{i=0}^{n}(-1)^{i}\binom{n+2}{i+1}+(-1)^{n+1}\binom{n+2}{n+2} \\
& =\sum_{i=-1}^{n}(-1)^{i+1}\binom{n+2}{i+1}+1+(-1)^{n}+(-1)^{n+1} \\
& =\binom{n+2}{0}-\sum_{i=0}^{n}(-1)^{i}\binom{n+2}{i+1}+1 \\
& =1-\left(1+(-1)^{n}\right)+1 \\
& =1+(-1)^{n+1}
\end{aligned}
$$

Therefore, $\chi\left(S^{n}\right)=1+(-1)^{n}$.
Now for n even, $2=\chi\left(S^{n}\right)=2 \chi\left(\mathrm{R} P^{n}\right)$, therefore $\chi\left(\mathrm{R} P^{n}\right)=1$. Since $\mathrm{R} P^{n}$ covers X, there exists a positive integer m such that $\mathrm{R} P^{n}$ is an m-fold cover. Therefore $1=\chi\left(\mathrm{R} P^{n}\right)=m \chi(X) \Rightarrow \chi(X)=1$.

For n odd, $0=\chi\left(S^{n}\right)=2 \chi\left(\mathrm{R} P^{n}\right)$, therefore $\chi\left(\mathrm{R} P^{n}\right)=0$. Again, there exists a positive integer m such that $\mathrm{R} P^{n}$ is an m-fold cover of X. Therefore $0=\chi\left(\mathrm{R} P^{n}\right)=m \chi(X) \Rightarrow \chi(X)=0$.
Since $\chi(X)=\chi\left(\mathrm{R} P^{n}\right)$ in both cases, the obvious (though somewhat trivial) example in each is that $\mathrm{R} P^{n}$ is a 1 -fold covering of $X=\mathrm{R} P^{n}$.
6. Let K be a 4 -dimensional simplicial complex which has 80 -simplies, 121 -simplicies, 9 2simplicies, 103 -simplicies, and 64 -simplices. Suppose that

$$
H_{0}(K)=\mathbf{Z}, H_{1}(K)=\mathbf{Z} \oplus \mathbf{Z} \oplus \mathbf{Z}_{2}, H_{2}(K)=\mathbf{Z} \oplus \mathbf{Z}_{3}, H_{3}(K)=\mathbf{Z} \otimes \mathbf{Z}_{4} .
$$

What is $H_{4}(K)$?

By definition $H_{4}(K)=\operatorname{Ker} \partial_{4} / \operatorname{Im} \partial_{5}$. Since K is 4 dimensional, then $\mathrm{C}_{5} K=0$
which means that $\operatorname{Im} \partial_{5}=0$. Therefore $H_{4}(K)=\operatorname{Ker} \partial_{4} \subset \mathrm{C}_{4} K$ which
means $\quad H_{4} K$ is free. Now, set $n_{i}=\#$ of i-simplicies . Then $\chi(K)=\sum_{i=0}^{n}(-1)^{i} n_{i}=8-12+9-10+6=1$. But also $\chi(K)=\sum_{i=0}^{\infty}(-1)^{i} \operatorname{rank}\left(H_{i} K\right)$. Therefore $\quad 1=1-2+1-1+\operatorname{rank}\left(H_{4} K\right)=-1+\operatorname{rank}\left(H_{4} K\right) \Rightarrow \operatorname{rank}\left(H_{4} K\right)=2$. Thus, $H_{4} K \cong \mathrm{Z} \oplus \mathrm{Z}$.

REFERENCES

Bredon, "Topology and Geometry." Springer-Verlag, New York: 1993.
Hofmann, "Introduction to Topological Groups." Available at http://www.mathematik.tu-darmstadt.de/Math-Net/Lehrveranstaltungen/Lehrmaterial/WS20032004/topological_groups/topgr.pdf

Maclaurin and Robertson, "Euler Characteristic in Odd Dimensions." Available at http://frey.newcastle.edu.au/~guyan/Colin.pdf

