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1 Introduction

An Egyptian fraction is a sum of distinct positive unit fractions. In many
cases a given fraction has several representations, for example

5

121
=

1

25
+

1

757
+

1

763309
+

1

873960180913
+

1

1527612795642093418846225

or more simply, 5
121

= 1
33

+ 1
99

+ 1
1089

. The former is obtained from the
greedy algorithm while the latter comes from performing the greedy 11-adic
algorithm that we will introduce in Section 4.
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2 Traditional Egyptian Fractions and Greedy

Algorithm

Proposition 1 (Classical Division Algorithm). For all positive integers a, b ∈
Z there exist unique positive integers q and r such that b = aq − r with r
strictly less than a.

Proof. This proof is similar to the standard proof of the original classical
division algorithm. Let a and b be positive integers. To show existence,
consider the set S = {an − b ≥ 0 : n ∈ Z}. Clearly there is at least
one nonnegative entry since a large multiple of a must exceed b. Among
these entries there is a least called r that’s guaranteed by the Well-Ordering
Principle. Then by definition for some integer, denoted q, we have r = aq− b
or b = aq − r as desired.

As with the original classical algorithm we require 0 ≤ r < a. The first
inequality is a given since it’s an element of S. To prove that the second
holds, suppose for contradiction that r ≥ a. Then r = aq − b ≥ a implies
r − a = a(q − 1)− b ≥ 0 which shows that r > r − a ∈ S which contradicts
the minimality of r.

Like the classical division algorithm we obtain uniqueness. Suppose that
b = aq− r = aq′− r′. Subtracting gives a(q− q′) = r− r′ so a | r− r′. Which
is impossible since |r − r′| < a unless r − r′ = 0 and so r = r′ as needed.
Then, aq = aq′ and q = q′ as well.

Definition 1 (The Greedy Algorithm). The Greedy Algorithm applied to
a

b
starts by using the modified division algorithm to find the unique q1 and r1
such that

b = aq1 − r1.
Next, we apply the modified division algorithm to bq1 and r1. Continuing we
have,

b = aq1 − r1
bq1 = r1q2 − r2

...

bq1q2q3 . . . qn−2 = rn−2qn−1 − rn−1
bq1q2q3 . . . qn−2qn−1 = rn−1qn − 0 with rn = 0.
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The algorithm eventually terminates since the modified division algorithm
requires each remainder to be less than the previous and therefore yields a
decreasing sequence of positive integers.

Notice that rearranging the terms from the algorithm yields,

a

b
=

1

q1
+

r1
bq1

(?)

r1
bq1

=
1

q2
+

r2
bq1q2

...

rn−2
bq1q2q3 . . . qn−2

=
1

qn−1
+

rn−1
bq1q2q3 . . . qn−2qn−1

rn−1
bq1q2q3 . . . qn−2qn−1

=
1

qn

which shows that the sum of the reciprocals of the qi is equal to a
b

i.e.

a

b
=

n∑
i=1

1

qi

To be an Egyptian fraction expansion each term must be distinct. Indeed,
qi > qi−1 since q1 = d b

a
e and q2 = d bq1

r1
e = d b

r1/q1
e > d b

a
e, the last inequality

follows from r1
q1
< a.

5121 Example 1. Performing the Classical Greedy Algorithm on
5

11
gives the

following expansion,
5

11
=

1

3
+

1

9
+

1

99
.

3 Set-up

Definition 2 (Order). The order of some integer n with respect to a prime
p, denoted ordp (n), is the power of p that exactly divides n. We define

ordp

(a
b

)
= ordp (a)− ordp (b) .
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Definition 3 (Unit part). Let r = a
b
∈ Q and p prime. The unit part of r,

denoted r̂ is given by
r̂ := rp−ordp(r).

Note that ordp (â) = 0 and â and p are relatively prime. Throughout we
will write ordp (a) = α and ordp (b) = β.

rationalorder Proposition 2. If a, b ∈ Q then ordp (ab) = ordp (a) + ordp (b)

Proof. Using units we write a = âpα and b = b̂pβ. Then

ordp (ab) = ordp

(
â · b̂ · pα+β

)
= α + β.

order Lemma 1. If a, b ∈ Q and p prime then ordp (a+ b) ≥ min{ordp (a) , ordp (b)}.
We have equality when ordp (a) 6= ordp (b).

Proof. Taking a, b ∈ Q we assume without loss of generality that β ≤ α.
Using units we write a = âpα and b = b̂pβ.

ordp (a+ b) = ordp

(
âpα + b̂pβ

)
= ordp

(
pβ
(
âpα−β + b̂

))
= β + ordp

(
âpα−β + b̂

)
. Proposition

rationalorderrationalorder
2

Should α = β, we have

ordp (a+ b) = β + ordp

(
â+ b̂

)
≥ min {α, β}

In the case where α 6= β we have that α − β is positive. Then the order of
âpα−β + b̂ is zero and

ordp (a+ b) = min{α, β}.
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4 p-Greedy Algorithm

pdiv Theorem 2 (p-Division Algorithm). Let a, p ∈ Z with p prime and b ∈
Z[1

p
] = {mpk | m, k ∈ Z}. Then, there exist unique r ∈ Z and q ∈ Z[1

p
] such

that b = aq − r with 0 ≤ r < ap and ordp (r) > ordp (a).

Proof.

Existence Let a, b ∈ Z and p prime. Since â and p are relatively prime
any power of p has an inverse mod â. Take 0 ≤ r < â such that
r ≡ −b̂pβ−α−1 mod â. For some integer m we can write,

rp−β+α+1 − (−b̂) = âm

rpα+1 + b̂pβ = âmpβ

b̂pβ = âpαmpβ−α − rpα+1

b = aq − r

with q = mpβ−α and r = rpα+1.

Uniqueness Given a, b ∈ Z and p prime suppose that there exist corre-
sponding q1, r1, q2, r2 such that b = aq1 − r1 = aq2 − r2. Then,

a(q1 − q2) = r1 − r2 (1)

By (1) we have that r1 ≡ r2 mod â and r1 ≡ r2 mod pα+1 since by
assumption ordp (ri) > a. Therefore, r1 ≡ r2 mod ap. Thus, r1 = r2
or only one is between 0 and ap; so r1 = r2 and q1 = q2 and we have
uniqueness as desired.

Note, it’s possible that r 6= r̂.
The value of ordp (r) can vary depending on the choice of prime. Consider

the case where a = 23 and b = 60. If we take p = 5 then a = 23·50, b = 12·51.
Then,

r ≡ −(12)(5)1−0−1 ≡ 11 (mod 23)

and ord5 (r) = 0. However, if p = 3 then a = 23 · 30, b = 20 · 31. Then,

r ≡ −(20)(3)1−0−1 ≡ 3 (mod 23)

and the order of r is 1.
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Definition 4. A jump occurs when after performing the p-Division Algo-
rithm we have ordp (r) ≥ 1.

Lemma 3. If p > â then r = r̂, i.e. there is no jump.

Proof. Simply note that r is taken mod â; hence r < â < p.

pgreedy Definition 5 (p-Greedy Algorithm). Let a, b, p ∈ Z with p prime. Theorem
pdivpdiv
2 gives unique q1 ∈ Z[1

p
] and r1 ∈ Z such that b = aq1− r1. Repeating on bq1

and r1 gives,

b = aq1 − r1
bq1 = r1q2 − r2

...

bq1b2 · · · qn−2 = rn−2qn−1 − rn−1
bq1q2 · · · qn−1 = rn−1qn − 0 until rn = 0

Note by
greedyalgebragreedyalgebra
??(?) we again get a

b
=
∑

1
qi

.

Example 2. Consider the fraction 12
5

. Performing the Greedy 3-Adic Algo-
rithm yields,

5 = 12

(
8

3

)
− 27 r1 = 3

5

(
8

3

)
= 27

(
40

81

)
− 0

and
12

5
=

3

8
+

81

40
.

In the classical case typically the q’s are any integer greater than one;
these come from expanding a fraction whose size is less than one. We get
q = 1 only if the fraction being expanded is greater than one. (The classical
greedy algorithm always takes the next largest unit fraction, including 1)
The p-Adic q’s from the above example look very different but are in fact
typical in that their order is decreasing and we will see later that they are
obtained from expanding fractions whose order is nonnegative. Fractions
with negative order lead to the atypical p-Adic case where q = p as shown
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below. Even though the p-Adic case deals with order, it should be noted
that as elements of the p-Adic field Qp, fractions with negative order are
considered greater than one, and q = p leads to the term 1/p appearing in
the expansion which is analogous to 1/1 appearing in a classical expansion
since under the p-Adic norm 1/p has size p.

Example 3. Consider the fraction 85
126

= 17·5
32·7·2 . Performing the Greedy 7-

Adic Algorithm yields,

126 = 85(7)− 469 r1 = 67

126 · 7 = 469(7)− 2401 r2 = 49

126 · 7 · 7 = 2401

(
18

7

)
− 0

and
85

126
=

1

7
+

1

7
+

7

18
.

finite Theorem 4. The p-Greedy Algorithm terminates in a finite number of steps.

Proof. Note that rk is taken mod r̂k−1 with representatives in {0, 1, 2, . . . , r̂k−1−
1} and therefore, r̂k ≤ rk < r̂k−1. Since r̂k is nonnegative, this is a decreasing
sequence of natural numbers that must end with zero. Eventually r̂n and rn
are identically zero and the algorithm terminates.

Corollary 5. The p-Greedy Algorithm terminates in at most â steps. This
follows from the fact that the sequence of the unit parts of the remainders
r̂1, r̂2, . . . , 0 is defined so that r̂i is taken mod r̂i−1 with r̂0 := â.

Definition 6 (Pure p-Egyptian Fraction). For a fixed prime p, if

a

b
=

n∑
i=1

p`i

mi

with `i strictly increasing nonnegative and mi positive relatively prime to p
then the sum is a p-Egyptian fraction expansion for a

b
.

classification Lemma 6 (Classification). Let a, b, p ∈ Z with p prime. Suppose that ` =
ordp

(
a
b

)
≤ −1. Let q denote the quotient from the p-adic division algorithm

and q′ the quotient from the classical division algorithm on ap
b

. Then, q = pq′.
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Proof. Since ` ≤ −1 we can write

a

b
=

â

b̂p−`

ap

b
=

â

b̂p−`−1
.

The p-adic division algorithm gives r and q such that,

b̂p−` = âq − rp
r ≡ −b̂p−`−1 (mod â)

q =
b̂p−` + rp

â
.

Applying the modified classical division algorithm yields q′ and r′ such
that,

b̂p−`−1 = âq′ − r′

r′ = âq′ − b̂p−`−1

r′ ≡ −b̂p−`−1 ≡ r (mod â)

r′ = r (smallest nonnegative representatives always used)

q′ =
b̂p−`−1 + r′

â
.

Finally,

q′p =
b̂p−` + rp

â
=
b̂p−` + rp

â
= q.

nojumps Corollary 7. If ordp
(
a
b

)
≤ −1 and if no jumps occur than each term of the

p-Adic Greedy Algorithm for a
b

is equal to the corresponding term in the
classical Greedy Algorithm on ap

b
divided by p.

For example, consider the fraction a
b

= 5
121

= 51

112
. If we take p = 11

then ordp
(
a
b

)
= −2. Applying the 11-Adic Greedy Algorithm to 5

121
yields

r1 = 4, r2 = 3, r3 = 0 all of order zero. Using the qi we can write,

5

121
=

1

33
+

1

99
+

1

1089
.

Recall example
51215121
1 gave ap

b
= 5·11

121
= 1

3
+ 1

9
+ 1

99
.

Note, the restriction on jumps is sufficient but not necessary, for an ex-
ample use 22

45
with p = 3.
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firstterm Lemma 8. Suppose that ordp
(
a
b

)
≥ 0, then the quotient from the division

algorithm is not p.

Proof. If ordp
(
a
b

)
> 0 then ordp (q) = β − α 6= 0. Suppose ordp

(
a
b

)
= 0. For

sake of a contradiction, suppose that q = p. Since q = mpβ−α and the order
is zero we have that q = m = p and

rp+ b̂ = âm = âp

however this is impossible since

ordp

(
rp+ b̂

)
= 0 6= 1 = ordp (âp) .

negativeorder Theorem 9. Let a, b, p ∈ Z with p prime. Suppose that ordp
(
a
b

)
≤ −1 and

bap
b
c ≥ 1, then dividing b by a using the p-Adic Division Algorithm yields

q = p and
a

b
=

1

p
+

r

bp
.

Proof. The fraction ap
b
≥ 1 and therefore its Classical Greedy Egyptian Frac-

tion Expansion begins with 1. By assumption ordp
(
a
b

)
≤ −1 so by Lemma

classificationclassification
6 the quotient from using the p-Adic Divison Algorithm to divide b by a is
p.

nonnegativeorder Theorem 10. If a, p ∈ Z with p prime and b ∈ Z[1
p
] and 0 ≤ ordp

(
a
b

)
then

applying the p-Adic Division algorithm to divide b by a yields q and r such
that

ordp (bq) ≤ ordp (b) ≤ ordp (a) < ordp (r) .

Proof. The p-Adic Division algorithm says that r = rpordp(a)+1 which allows
us to write

ordp (a) < ordp (a) + 1 ≤ ordp (r)

By hypothesis we already have ordp (b) ≤ ordp (a). Therefore, it remains to
show that ordp (q) ≤ 0. Drawing on the p-Division algorithm again we have,

ordp (q) = ordp (b+ r)− ordp (a)

= ordp (b)− ordp (a) since ordp (b) < ordp (r)

≤ 0.

Hence, ordp (bq) = ordp (b) + ordp (q) ≤ ordp (b).
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class2 Theorem 11. Let a, b, p ∈ Z with p prime. Then performing the p-Adic
Greedy Algorithm yields quotients such that qi = p for i ≤ K where K is
the least K such that one of the following is true:⌊ap− bK

bp
· p
⌋
≤ 1 (2) conditionfloor

ordp

(
ap− bK

bp

)
≥ 0. (3) conditionorder

Proof. First note that K always exists since the fraction in condition
conditionfloorconditionfloor
2 is

decreasing. For 0 ≤ i < K we have that the negations of
conditionfloorconditionfloor
2 and

conditionorderconditionorder
3 are

satisfied. Should K = 0 then either bap
b
c ≥ 1 in which case the quotient

from the Greedy Expansion isn’t 1 and therefore q1 from the p-Adic Greedy
Algorithm isn’t p or ordp

(
a
b

)
≥ 0 and by Lemma

firsttermfirstterm
8 q1 6= p.

Suppose that K ≥ 1. Recall that at each step of the p-Adic Greedy
Algorithm we perform the p-Adic Division Algorithm on

rK
bq1 · · · qK

=
a

b
− K

p
=
ap− bK

bp
.

Note that K is the first integer such that ap−bK
bp

fails to satisfy the hypotheses

of theorem
negativeordernegativeorder
9. Subsequent remainders are either strictly less than ap−bK

bp
or

their orders are greater by Lemma
nonnegativeordernonnegativeorder
10.

5 p-Egyptian Traditional

In both the classical and the p-adic case, repeated application of a modified
division algorithm yielded the following sum,

a

b
=

n∑
i=1

1

qi
.

The classical qi are always integers so the sum is an Egyptian fraction ex-
pansion. The p-adic case yields qi that force powers of p to appear in the
numerator of each term. Even though this sum isn’t immediately an Egyp-
tian fraction expansion, it becomes one once you divide out by the highest
power of p present among the terms. Of course it’s no longer an Egyptian

10



fraction expansion for a
b

but it is a valid expansion for another rational,

namely
a

bp−ordp(qn)
.

It’s possible in some cases to reverse this process by starting with a frac-
tion a

b
and for each prime that makes up b, remove it and find the corre-

sponding p-adic Egyptian fraction expansion for what remains. A fraction
works if the desired power k of p in the denominator is greater than or equal
to the order of the last term in the expansion so that dividing out doesn’t
leave any powers of p behind. The order of 1/qn sets the lowest power of p
that is allowed in the denominator.

Example 4. Suppose that we want an Egyptian fraction expansion for

13

189
=

13

337
.

From the primes in the denominator we see that we can either perform the

3-Adic algorithm on
13

7
or the 7-Adic algorithm on

13

27
. In the 3-Adic case

we will be successful if the final term in the expansion has no more than 3
powers of p = 3 in the numerator, while the 7-Adic case would require that
the final term have order at most one.

The 7-Adic case yields,

13

27
=

1

8
+

7

33
+

343

2376
.

Dividing by 7 we find that

13

189
=

1

56
+

1

33
+

49

2376

which won’t work for our purposes since there are still terms of positive order
in the expansion.

The 3-Adic case yields,

13

7
= 1 +

3

8
+

27

56

which when divided by 33 yields,

13

189
=

1

27
+

1

72
+

1

56
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which is an Egyptian fraction expansion that’s significantly more balanced
than the one obtained from the classical greedy algorithm:

13

189
=

1

15
+

1

473
+

1

446985
.

The kinds of fractions that can be expanded in this way depend on the
order of qn.

ordq Corollary 12. Inspecting subsequent steps of the p-Greedy algorithm we
see that,

ordp (qk) = ordp (bq1q2 . . . qk−1)− ordp (rk−1) .

Proof. Since qkrk−1 = bq1 · · · qk−1 + rk and ordp (bq1 · · · qk−1) < ordp (rk) by

Lemma
orderorder
1 ordp (qk) = ordp

(
bq1···qk−1

rk−1

)
= ordp (bq1q2 . . . qk−1)−ordp (rk−1).

Theorem 13. Let a, b, p ∈ Z with p prime and ordp (b) = β, ordp (a) = α.
Then,

ordp (qn) = 1 + 2n−1

(
β − α− 1−

n−1∑
i=1

ordp (ri)

2i

)
with qn and ri defined as per the p-Greedy algorithm in Definition

pgreedypgreedy
5.

Proof. We proceed by induction on n.

Base Case: n = 1. By Theorem
pdivpdiv
2 the order of q1 is β−α = 1+20(β−α−1).

Inductive Case: Suppose for some n ≥ 1 that

ordp (qn) = 1 + 2n−1

(
β − α− 1−

n−1∑
i=1

ordp (ri)

2i

)
.

By corollary
ordqordq
12 we already have that

ordp (qn+1) = ordp (bq1 . . . qn)− ordp (rn) .

Then,

ordp (qn+1) = ordp (bq1 . . . qn) + ordp (rn−1)− ordp (rn−1)− ordp (rn)

= ordp (bq1 . . . qn−1) + ordp (qn) + ordp (rn−1)− ordp (rn−1)− ordp (rn)
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= 2 · ordp (qn) + ordp (rn−1)− ordp (rn) Corollary
ordqordq
12

= 2 · ordp (qn) + ordp (rn−1)− ordp (rn)− ordp (rn−1)− 1 Since r = rpα+1

= 2 + 2n

(
β − α− 1−

n−1∑
i=1

ordp (ri)

2i

)
− ordp (rn)− 1

= 1 + 2n

(
β − α− 1−

n−1∑
i=1

ordp (ri)

2i

)
− 2nordp (rn)

2n

= 1 + 2n

(
β − α− 1−

n∑
i=1

ordp (ri)

2i

)
.

Thus the order of qn is given by,

ordp (qn) = 1 + 2n−1

(
β − α− 1−

n−1∑
i=1

ordp (ri)

2i

)
.

Corollary 14. If ordp
(
a
b

)
= 0 then

ordp (qn) = 1− 2n−1 −
n−1∑
i=1

2n+i−1ordp (ri) .

6 Conclusion

• The classical algorithm can handle irrational numbers since since q =
db/ae where b = 1 and a irrational. Although p-Adic numbers have an
associated norm, there are many rationals that satisfy |x|p = 1 e.g. all
rationals of order 0 so it’s difficult to pick the “correct” one. There is
also no clear way to define what it means for one to “mod out” by â if
it’s irrational.

• The classical greedy algorithm for egyptian fractions always takes the
next largest unit fraction. Therefore, if a term is deleted the expansion
for the remaining terms will simply be the original expansion with
the one term deleted. The same appears to be true for the p-Adic
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algorithm, however if one defines “next largest unit fraction” as the
next 1/q (in the classical case this corresponds to the next largest by
absolute value) than all you know is that some 1/q is “less” than a/b,
however there’s no way to test this unless one actually carries out the
algorithm. Of course, one cannot expect a perfect analogy to always
exist.

• The unit part of qn can be roughly approximated by

(
b̂

â

)2n−1

2n−1.

Assuming that ordp
(
a
b

)
= 0 and that p > â allows us to determine the

order of qn exactly and we have that the 1/q terms grow as

p2
n−1−1(

b̂
â

)2n−1

2n−1

hence if b̂/â ≈ p/2 we obtain particularily balanced terms.

• The p-Adic algorithm yields an expansion with at most â terms. It
remains to be seen if these examples always exist.

• It would also pay to investigate the average lengths of expansions and
compare it to the average length of sequences if r̂i is assumed to be a
random integer mod r̂i−1.
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