Generalized Factorials and Taylor Expansions

Michael R. Pilla Winona State University

April 16, 2010

Factorials ●0	Examples 0000000	Taylor Series Expansions	Extensions
Factorials			

 $n! = n \cdot (n-1) \cdots 2 \cdot 1 =$

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Factorials ●○	Examples 0000000	Taylor Series Expansions	Extensions
Factorials			

$$n! = n \cdot (n-1) \cdots 2 \cdot 1 = (n-0)(n-1)(n-2) \cdots (n-(n-2))(n-(n-1)).$$

・ロト ・四ト ・ヨト ・ヨトー

Factorials ●○	Examples 0000000	Taylor Series Expansions	Extensions
Factorials			

$$n! = n \cdot (n-1) \cdots 2 \cdot 1 = (n-0)(n-1)(n-2) \cdots (n-(n-2))(n-(n-1)).$$

• For
$$S = \{a_0, a_1, a_2, a_3, ...\} \subseteq \mathbb{N}$$
,
Define $n!_S = (a_n - a_0)(a_n - a_1) \cdots (a_n - a_{n-1})$.

・ 回 と ・ ヨ と ・ ヨ と

Factorials ●○	Examples 0000000	Taylor Series Expansions	Extensions
Factorials			

$$n! = n \cdot (n-1) \cdots 2 \cdot 1 = (n-0)(n-1)(n-2) \cdots (n-(n-2))(n-(n-1)).$$

• For
$$S = \{a_0, a_1, a_2, a_3, ...\} \subseteq \mathbb{N}$$
,
Define $n!_S = (a_n - a_0)(a_n - a_1) \cdots (a_n - a_{n-1})$.

Pros:

- 4 回 2 4 三 2 4 三 2 4

●O O	xamples	laylor Series Expansions	Extensions
Factorials			

$$n! = n \cdot (n-1) \cdots 2 \cdot 1 = (n-0)(n-1)(n-2) \cdots (n-(n-2))(n-(n-1)).$$

• For
$$S = \{a_0, a_1, a_2, a_3, ...\} \subseteq \mathbb{N}$$
,
Define $n!_S = (a_n - a_0)(a_n - a_1) \cdots (a_n - a_{n-1})$.

Pros:

• We have a nice formula.

< 3 > <

< ≣⇒

Factorials ●○	Examples 0000000	Taylor Series Expansions	Extensions
Factorials			

$$n! = n \cdot (n-1) \cdots 2 \cdot 1 = (n-0)(n-1)(n-2) \cdots (n-(n-2))(n-(n-1)).$$

• For
$$S = \{a_0, a_1, a_2, a_3, ...\} \subseteq \mathbb{N}$$
,
Define $n!_S = (a_n - a_0)(a_n - a_1) \cdots (a_n - a_{n-1})$.

Pros:

- We have a nice formula.
- It works on subsets of $\mathbb N.$

3

Factorials ●○	Examples 0000000	Taylor Series Expansions	Extensions
Factorials			

$$n! = n \cdot (n-1) \cdots 2 \cdot 1 = (n-0)(n-1)(n-2) \cdots (n-(n-2))(n-(n-1)).$$

• For
$$S = \{a_0, a_1, a_2, a_3, ...\} \subseteq \mathbb{N}$$
,
Define $n!_S = (a_n - a_0)(a_n - a_1) \cdots (a_n - a_{n-1})$.

Cons:

3

æ

Pros:

- We have a nice formula.
- It works on subsets of $\mathbb N.$

Factorials ●○	Examples 0000000	Taylor Series Expansions	Extensions
Factorials			

$$n! = n \cdot (n-1) \cdots 2 \cdot 1 = (n-0)(n-1)(n-2) \cdots (n-(n-2))(n-(n-1)).$$

• For
$$S = \{a_0, a_1, a_2, a_3, ...\} \subseteq \mathbb{N}$$
,
Define $n!_S = (a_n - a_0)(a_n - a_1) \cdots (a_n - a_{n-1})$.

Cons:

3

• It is not theoretically useful.

Pros:

- We have a nice formula.
- It works on subsets of $\mathbb N.$

Factorials ●○	Examples 0000000	Taylor Series Expansions	Extensions
Factorials			

Pros:

• We have a nice formula.

• It works on subsets of \mathbb{N} .

$$n! = n \cdot (n-1) \cdots 2 \cdot 1 = (n-0)(n-1)(n-2) \cdots (n-(n-2))(n-(n-1)).$$

• For
$$S = \{a_0, a_1, a_2, a_3, ...\} \subseteq \mathbb{N}$$
,
Define $n!_S = (a_n - a_0)(a_n - a_1) \cdots (a_n - a_{n-1})$.

Cons:

- It is not theoretically useful.
- What about the order of the subset?

Factorials ○●	Examples 0000000	Taylor Series Expansions	Extensions
Generalize	ed Factorials		

• Bhargava: Let's look at prime factorizations and play a game called *p*-ordering for each prime *p*.

Factorials	Examples	Taylor Series Expansions	Extensions
00			
Generaliz	ed Factorials		

- Bhargava: Let's look at prime factorizations and play a game called *p*-ordering for each prime *p*.
- If the ordering works for all primes simultaneosly, then we can achieve nice formulas.

Factorials	Examples	Taylor Series Expansions	Extensions
0•			

Generalized Factorials

- Bhargava: Let's look at prime factorizations and play a game called *p*-ordering for each prime *p*.
- If the ordering works for all primes simultaneosly, then we can achieve nice formulas.

Theorem

If $S = \{a_i\}$ is p-ordered for all primes simultaneously then

$$n!_{S} = |(a_{n} - a_{0})(a_{n} - a_{1}) \cdots (a_{n} - a_{n-1})|.$$

Factorials	Examples	Taylor Series Expansions	Extensions
0•			

Generalized Factorials

- Bhargava: Let's look at prime factorizations and play a game called *p*-ordering for each prime *p*.
- If the ordering works for all primes simultaneosly, then we can achieve nice formulas.

Theorem

If $S = \{a_i\}$ is p-ordered for all primes simultaneously then

$$n!_{S} = |(a_{n} - a_{0})(a_{n} - a_{1}) \cdots (a_{n} - a_{n-1})|.$$

• If a subset cannot be simultaneously ordered, the formulas are ugly (if and when they exist) and the factorials difficult to calculate.

Factorials	Examples	Taylor Series Expansions	Extensions
0•			

Generalized Factorials

- Bhargava: Let's look at prime factorizations and play a game called *p*-ordering for each prime *p*.
- If the ordering works for all primes simultaneosly, then we can achieve nice formulas.

Theorem

If $S = \{a_i\}$ is p-ordered for all primes simultaneously then

$$n!_{S} = |(a_{n} - a_{0})(a_{n} - a_{1}) \cdots (a_{n} - a_{n-1})|.$$

- If a subset cannot be simultaneously ordered, the formulas are ugly (if and when they exist) and the factorials difficult to calculate.
- Goal: Extend factorials to "nice", "natural" subsets of ℕ that have closed formulas.

Factorials	Examples	Taylor Series Expansions	Extensions
	•000000		

Example

Consider the arithmetic set A = {2,9,16,23,...} (i.e. all integers 2 mod 7). This is *p*-ordered for all primes simultaneously. Thus

Factorials	Examples	Taylor Series Expansions	Extensions
	000000		

Example

Consider the arithmetic set A = {2,9,16,23,...} (i.e. all integers 2 mod 7). This is *p*-ordered for all primes simultaneously. Thus

•
$$1!_A = (9-2) = 7$$

Factorials	Examples	Taylor Series Expansions	Extensions
	000000		

Example

Consider the arithmetic set A = {2,9,16,23,...} (i.e. all integers 2 mod 7). This is *p*-ordered for all primes simultaneously. Thus

•
$$1!_A = (9-2) = 7$$

•
$$2!_A = (16 - 2)(16 - 9) = 98$$

・ 同・ ・ ヨ・

Factorials	Examples	Taylor Series Expansions	Extensions
	000000		

Example

Consider the arithmetic set A = {2,9,16,23,...} (i.e. all integers 2 mod 7). This is *p*-ordered for all primes simultaneously. Thus

•
$$1!_A = (9-2) = 7$$

•
$$2!_A = (16 - 2)(16 - 9) = 98$$

• $3!_A = (23 - 2)(23 - 9)(23 - 16) = 2058$

Factorials	Examples	Taylor Series Expansions	Extensions
	000000		

Example

Consider the arithmetic set A = {2,9,16,23,...} (i.e. all integers 2 mod 7). This is *p*-ordered for all primes simultaneously. Thus

•
$$1!_A = (9-2) = 7 = 7^1 1!$$

•
$$2!_A = (16 - 2)(16 - 9) = 98 = 7^2 2!$$

• $3!_A = (23 - 2)(23 - 9)(23 - 16) = 2058 = 7^3 3!$

•
$$n!_A = 7^n n!$$

Factorials	Examples	Taylor Series Expansions	Extensions
	000000		

Example

Consider the arithmetic set A = {2,9,16,23,...} (i.e. all integers 2 mod 7). This is *p*-ordered for all primes simultaneously. Thus

•
$$1!_A = (9-2) = 7 = 7^1 1!$$

•
$$2!_A = (16 - 2)(16 - 9) = 98 = 7^2 2!$$

• $3!_A = (23 - 2)(23 - 9)(23 - 16) = 2058 = 7^3 3!$

•
$$n!_A = 7^n n!$$

Example

Let $S = a\mathbb{N} + b$ of all integers $b \mod a$. The natural ordering is p-ordered for all primes simultaneously. Thus

$$n!_{a\mathbb{N}+b} = a^n n!$$

Factorials	Examples	Taylor Series Expansions	Extensions
	000000		

Example

The set Z² = {0, 1, 4, 9, 16, ...} of square numbers admits a simultaneous *p*-ordering. Thus

Factorials	Examples	Taylor Series Expansions	Extensions
	000000		

Example

The set Z² = {0, 1, 4, 9, 16, ...} of square numbers admits a simultaneous *p*-ordering. Thus

•
$$1!_{\mathbb{Z}^2} = (1 - 0) = 1$$

Factorials	Examples	Taylor Series Expansions	Extensions
	000000		

Example

The set Z² = {0,1,4,9,16,...} of square numbers admits a simultaneous *p*-ordering. Thus

•
$$1!_{\mathbb{Z}^2} = (1 - 0) = 1$$

•
$$2!_{\mathbb{Z}^2} = (4-0)(4-1) = 12$$

Factorials	Examples	Taylor Series Expansions	Extensions
	000000		

Example

The set Z² = {0,1,4,9,16,...} of square numbers admits a simultaneous *p*-ordering. Thus

•
$$1!_{\mathbb{Z}^2} = (1 - 0) = 1$$

•
$$2!_{\mathbb{Z}^2} = (4-0)(4-1) = 12$$

•
$$3!_{\mathbb{Z}^2} = (9-0)(9-1)(9-4) = 360$$

Factorials	Examples	Taylor Series Expansions	Extensions
	000000		

Example

The set Z² = {0,1,4,9,16,...} of square numbers admits a simultaneous *p*-ordering. Thus

•
$$1!_{\mathbb{Z}^2} = (1-0) = 1$$

•
$$2!_{\mathbb{Z}^2} = (4-0)(4-1) = 12$$

•
$$3!_{\mathbb{Z}^2} = (9-0)(9-1)(9-4) = 360$$

• $4!_{\mathbb{Z}^2} = (16 - 0)(16 - 1)(16 - 4)(16 - 9) = 20160$

Factorials	Examples	Taylor Series Expansions	Extensions
	000000		

Example

The set Z² = {0,1,4,9,16,...} of square numbers admits a simultaneous *p*-ordering. Thus
1!_{Z²} = (1 − 0) = 1
2!_{Z²} = (4 − 0)(4 − 1) = 12
3!_{Z²} = (9 − 0)(9 − 1)(9 − 4) = 360
4!_{Z²} = (16 − 0)(16 − 1)(16 − 4)(16 − 9) = 20160
n!_{Z²} = (n² − 0)(n² − 1)(n² − 4) · · · (n² − (n − 1)²)

Factorials	Examples	Taylor Series Expansions	Extensions
	000000		

Example

• The set $\mathbb{Z}^2 = \{0, 1, 4, 9, 16, ...\}$ of square numbers admits a simultaneous *p*-ordering. Thus • $1!_{\mathbb{Z}^2} = (1-0) = 1$ • $2!_{\pi^2} = (4-0)(4-1) = 12$ • $3!_{72} = (9-0)(9-1)(9-4) = 360$ • $4!_{\pi^2} = (16 - 0)(16 - 1)(16 - 4)(16 - 9) = 20160$ $n!_{\pi^2} = (n^2 - 0)(n^2 - 1)(n^2 - 4) \cdots (n^2 - (n - 1)^2)$ = (n-0)(n+0)(n-1)(n+1)...(n-(n-1))(n+(n-1)) $= \frac{2n}{2}(2n-1)(2n-2)\cdots(n)(n-1)\cdots(1)$ = $\frac{(2n)!}{2}$

Extensions

Twice Triangulars (Squares Modified)

Example

Likewise, one can show the set
 2T = {n² + n | n ∈ N} = {0, 2, 6, 12, 20, ...} admits a simultaneous *p*-ordering. Thus

- 4 同 2 4 日 2 4 日 2

Extensions

Twice Triangulars (Squares Modified)

Example

Likewise, one can show the set
 2T = {n² + n | n ∈ N} = {0, 2, 6, 12, 20, ...} admits a simultaneous *p*-ordering. Thus

•
$$1!_{2\mathbb{T}} = (2-0) = 2$$

・ロト ・日本 ・モート ・モート

Extensions

Twice Triangulars (Squares Modified)

Example

Likewise, one can show the set
 2T = {n² + n | n ∈ N} = {0, 2, 6, 12, 20, ...} admits a simultaneous *p*-ordering. Thus

•
$$1!_{2\mathbb{T}} = (2-0) = 2$$

•
$$2!_{2\mathbb{T}} = (6-0)(6-2) = 24$$

・ロト ・日本 ・モート ・モート

Extensions

Twice Triangulars (Squares Modified)

Example

Likewise, one can show the set
 2T = {n² + n | n ∈ N} = {0, 2, 6, 12, 20, ...} admits a simultaneous *p*-ordering. Thus

•
$$1!_{2\mathbb{T}} = (2-0) = 2$$

•
$$2!_{2\mathbb{T}} = (6-0)(6-2) = 24$$

• $3!_{2\mathbb{T}} = (12 - 0)(12 - 2)(12 - 6) = 720$

・ロン ・回と ・ヨン・

Extensions

Twice Triangulars (Squares Modified)

Example

Likewise, one can show the set
 2T = {n² + n | n ∈ N} = {0, 2, 6, 12, 20, ...} admits a simultaneous *p*-ordering. Thus

•
$$1!_{2\mathbb{T}} = (2-0) = 2$$

•
$$2!_{2\mathbb{T}} = (6-0)(6-2) = 24$$

- $3!_{2\mathbb{T}} = (12 0)(12 2)(12 6) = 720$
- $4!_{2\mathbb{T}} = (20 0)(20 2)(20 6)(20 12) = 40320$

・ロン ・回と ・ヨン・

Extensions

Twice Triangulars (Squares Modified)

Example

• Likewise, one can show the set $2\mathbb{T} = \{n^2 + n \mid n \in \mathbb{N}\} = \{0, 2, 6, 12, 20, ...\}$ admits a simultaneous *p*-ordering. Thus

•
$$1!_{2\mathbb{T}} = (2-0) = 2$$

•
$$2!_{2\mathbb{T}} = (6-0)(6-2) = 24$$

•
$$3!_{2\mathbb{T}} = (12 - 0)(12 - 2)(12 - 6) = 720$$

• $4!_{2\mathbb{T}} = (20 - 0)(20 - 2)(20 - 6)(20 - 12) = 40320$

•
$$n!_{2\mathbb{T}} = (2n)!$$

・ロン ・回と ・ヨン ・ヨン

Examples

Taylor Series Expansions

Extensions

A Geometric Progression

Example

Consider the geometric progression
 G = {5 · 3ⁿ} = {5, 15, 45, 135, 405, ...}. This set admits a simultaneous *p*-ordering and thus

(本間) (本語) (本語)

Examples

Taylor Series Expansions

Extensions

A Geometric Progression

Example

Consider the geometric progression
 G = {5 · 3ⁿ} = {5, 15, 45, 135, 405, ...}. This set admits a simultaneous *p*-ordering and thus

•
$$1!_G = (15 - 5) = 10$$

(本間) (本語) (本語)
Taylor Series Expansions

Extensions

A Geometric Progression

Example

Consider the geometric progression
 G = {5 · 3ⁿ} = {5, 15, 45, 135, 405, ...}. This set admits a simultaneous *p*-ordering and thus

•
$$1!_G = (15 - 5) = 10$$

•
$$2!_G = (45 - 5)(45 - 15) = 1200$$

イロン イヨン イヨン イヨン

Taylor Series Expansions

Extensions

A Geometric Progression

Example

Consider the geometric progression
 G = {5 · 3ⁿ} = {5, 15, 45, 135, 405, ...}. This set admits a simultaneous *p*-ordering and thus

•
$$1!_G = (15 - 5) = 10$$

•
$$2!_G = (45 - 5)(45 - 15) = 1200$$

• $3!_G = (135 - 5)(135 - 15)(135 - 45) = 1404000$

・ロン ・回と ・ヨン ・ヨン

Extensions

A Geometric Progression

Example

Consider the geometric progression
 G = {5 · 3ⁿ} = {5, 15, 45, 135, 405, ...}. This set admits a simultaneous *p*-ordering and thus

•
$$1!_G = (15 - 5) = 10$$

•
$$2!_G = (45 - 5)(45 - 15) = 1200$$

- $3!_G = (135 5)(135 15)(135 45) = 1404000$
- $4!_G = (405-5)(405-15)(405-45)(405-135) = 15163200000$

・ロン ・回 と ・ 回 と ・ 回 と

Extensions

A General Geometric Progression

Example

The geometric progression $aq^{\mathbb{N}}$ gives a simultaneous *p*-ordering. Thus

・ 同・ ・ ヨ・

→

Extensions

A General Geometric Progression

Example

The geometric progression $aq^{\mathbb{N}}$ gives a simultaneous *p*-ordering. Thus

$$n!_{aq^{\mathbb{N}}} = (aq^n - a)(aq^n - aq) \cdots (aq^n - aq^{n-1})$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Extensions

A General Geometric Progression

Example

The geometric progression $aq^{\mathbb{N}}$ gives a simultaneous *p*-ordering. Thus

$$n!_{aq^{\mathbb{N}}} = (aq^n - a)(aq^n - aq) \cdots (aq^n - aq^{n-1})$$

= $a^n q^n (1 - q^{-n})(1 - q^{1-n}) \cdots (1 - q^{-2})(1 - q^{-1}))$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Extensions

A General Geometric Progression

Example

The geometric progression $aq^{\mathbb{N}}$ gives a simultaneous *p*-ordering. Thus

$$n!_{aq^{\mathbb{N}}} = (aq^{n} - a)(aq^{n} - aq) \cdots (aq^{n} - aq^{n-1})$$

= $a^{n}q^{n}(1 - q^{-n})(1 - q^{1-n}) \cdots (1 - q^{-2})(1 - q^{-1}))$
= $(-aq)^{n}q^{\frac{-n(n+1)}{2}}(1 - q)(1 - q^{2}) \cdots (1 - q^{n})$

▲ 御 ▶ ▲ 臣 ▶

→ ∃ →

Extensions

A General Geometric Progression

Example

The geometric progression $aq^{\mathbb{N}}$ gives a simultaneous *p*-ordering. Thus

$$n!_{aq^{\mathbb{N}}} = (aq^{n} - a)(aq^{n} - aq) \cdots (aq^{n} - aq^{n-1})$$

= $a^{n}q^{n}(1 - q^{-n})(1 - q^{1-n}) \cdots (1 - q^{-2})(1 - q^{-1}))$
= $(-aq)^{n}q^{\frac{-n(n+1)}{2}}(1 - q)(1 - q^{2}) \cdots (1 - q^{n})$
= $(-aq)^{n}q^{\frac{-n(n+1)}{2}}(q : q)_{n}$
where $(q : q)_{n}$ is the q-Pochhammer symbol.

A (1) > (1) > (1)

• 3 >

Extensions

Non-Simultaneous Sets

Example

• While it can be shown that the primes do NOT admit a simultaneous *p*-ordering, Bhargava gives an intricate formula to calculate them.

- 4 同 6 4 日 6 4 日 6

Non-Simultaneous Sets

Example

• While it can be shown that the primes do NOT admit a simultaneous *p*-ordering, Bhargava gives an intricate formula to calculate them.

$$n!_{\mathbb{P}} = \prod_{p} p^{\lfloor \frac{n-1}{p-1} \rfloor + \lfloor \frac{n-1}{p(p-1)} \rfloor + \lfloor \frac{n-1}{p^2(p-1)} \rfloor + \cdots}$$

Non-Simultaneous Sets

Example

 While it can be shown that the primes do NOT admit a simultaneous *p*-ordering, Bhargava gives an intricate formula to calculate them.

$$n!_{\mathbb{P}} = \prod_{p} p^{\lfloor \frac{n-1}{p-1} \rfloor + \lfloor \frac{n-1}{p(p-1)} \rfloor + \lfloor \frac{n-1}{p^2(p-1)} \rfloor + \cdots}$$

• $\{n!_{\mathbb{P}}\} = \{1, 2, 24, 48, 5670, ...\}$

Non-Simultaneous Sets

Example

 While it can be shown that the primes do NOT admit a simultaneous *p*-ordering, Bhargava gives an intricate formula to calculate them.

$$n!_{\mathbb{P}} = \prod_{p} p^{\lfloor \frac{n-1}{p-1} \rfloor + \lfloor \frac{n-1}{p(p-1)} \rfloor + \lfloor \frac{n-1}{p^2(p-1)} \rfloor + \cdots}$$

•
$$\{n!_{\mathbb{P}}\} = \{1, 2, 24, 48, 5670, ...\}$$

Example

 The set of cubes N³ does not admit a simultaneous *p*-ordering and has no nice formula.

Non-Simultaneous Sets

Example

• While it can be shown that the primes do NOT admit a simultaneous *p*-ordering, Bhargava gives an intricate formula to calculate them.

$$n!_{\mathbb{P}} = \prod_{p} p^{\lfloor \frac{n-1}{p-1} \rfloor + \lfloor \frac{n-1}{p(p-1)} \rfloor + \lfloor \frac{n-1}{p^2(p-1)} \rfloor + \cdots}$$

•
$$\{n!_{\mathbb{P}}\} = \{1, 2, 24, 48, 5670, ...\}$$

Example

 The set of cubes N³ does not admit a simultaneous *p*-ordering and has no nice formula.

•
$$\{n!_{\mathbb{N}^3}\} = \{1, 2, 504, 504, 35280, ...\}$$

Fac	to	ria	al	
00				

Examples 000000● Taylor Series Expansions

Extensions

Summary of Examples

・ロン ・回と ・ヨン・

Э

Factorials	Examples	Taylor Series Expansions	Extensions

Summary of Examples

$$\mathbb{N} \quad \longleftrightarrow \quad n!_{\mathbb{N}} = n!$$
$$a\mathbb{N} + b \quad \Longleftrightarrow \quad n!_{a\mathbb{N}+b} = a^n n!$$

문 문 문

Fac	to	ri	al	S
00				

Taylor Series Expansions

Extensions

Summary of Examples

・ロン ・回と ・ヨン ・ヨン

æ

Fac	to	ri	al	
00				

Taylor Series Expansions

Extensions

Summary of Examples

・ロト ・回ト ・ヨト ・ヨト

æ

Fac	to	ri	al	
00				

Taylor Series Expansions

Extensions

Summary of Examples

(ロ) (同) (E) (E) (E)

Fac	to	ri	al	
00				

Taylor Series Expansions

Extensions

Summary of Examples

・ロン ・回 と ・ 回 と ・ 回 と

Factorials	Examples 0000000	Taylor Series Expansions ●○○○○○	Extensions
Question			

◆□ > ◆□ > ◆ 目 > ◆目 > ● 目 ● の < ⊙

Factorials	Examples 0000000	Taylor Series Expansions ●○○○○○	Extensions
Question			

Recall that one can write e^x as a Taylor series.

・ロト ・回ト ・ヨト ・ヨト

æ

Factorials	Examples 0000000	Taylor Series Expansions ●○○○○○	Extensions
Question			

Recall that one can write e^x as a Taylor series. That is

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

・ロン ・回と ・ヨン ・ヨン

æ

Factorials	Examples 0000000	Taylor Series Expansions ●○○○○○	Extensions
Question			

Recall that one can write e^x as a Taylor series. That is

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

Question: What is the !_S-analogue to this equation?

向下 イヨト イヨト

Factorials	Examples 0000000	Taylor Series Expansions ●○○○○○	Extensions
Question			

Recall that one can write e^x as a Taylor series. That is

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

Question: What is the !_S-analogue to this equation?

As it turns out, this is the wrong question to ask.

→

Factorials	Examples 0000000	Taylor Series Expansions ○●○○○○	Extensions
Right Que	estion		

Raising to the power of *m*, we can write $(e^{x})^{m}$ as follows:

3 ×

문 🕨 👘 문

Factorials	Examples 0000000	Taylor Series Expansions ○●○○○○	Extensions
Right Ques	tion		

Raising to the power of *m*, we can write $(e^x)^m$ as follows:

$$(e^{x})^{m} = e^{mx} = \sum_{n=0}^{\infty} \frac{m^{n}}{n!} x^{n} = 1 + \frac{m}{1!} x + \frac{m^{2}}{2!} x^{2} + \frac{m^{3}}{3!} x^{3} + \cdots$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

æ

Factorials	Examples 0000000	Taylor Series Expansions ○●○○○○	Extensions
Right Que	estion		

Raising to the power of *m*, we can write $(e^x)^m$ as follows:

$$(e^{x})^{m} = e^{mx} = \sum_{n=0}^{\infty} \frac{m^{n}}{n!} x^{n} = 1 + \frac{m}{1!} x + \frac{m^{2}}{2!} x^{2} + \frac{m^{3}}{3!} x^{3} + \cdots$$

Right Question: What is the 1_S-analogue of this equation?

- A 🖻 🕨

Factorials	Examples 0000000	Taylor Series Expansions ○●○○○○	Extensions
Right Ques	stion		

Raising to the power of *m*, we can write $(e^x)^m$ as follows:

$$(e^{x})^{m} = e^{mx} = \sum_{n=0}^{\infty} \frac{m^{n}}{n!} x^{n} = 1 + \frac{m}{1!} x + \frac{m^{2}}{2!} x^{2} + \frac{m^{3}}{3!} x^{3} + \cdots$$

Right Question: What is the 1_S-analogue of this equation?

Goal:

- 1) The numerator of each "coefficient" is a polynomial in *m*.
- 2) The denominator of each "coefficient" is a factorial.

Factorials

Examples

Taylor Series Expansions

Extensions

$(a\mathbb{N}+b)$ -analogue

Example

$$\left(\frac{a}{a-x}\right)^m = \left(1-\frac{x}{a}\right)^{-m}$$

Э

Taylor Series Expansions

Extensions

$(a\mathbb{N}+b)$ -analogue

Example

$$(\frac{a}{a-x})^m = (1 - \frac{x}{a})^{-m}$$

$$= 1 + \frac{m}{a}x + \frac{m(m-1)}{2a^2}x^2 + \frac{m(m-1)(m-2)}{6a^3}x^3$$

$$+ \frac{m(m-1)(m-2)(m-3)}{24a^4}x^4 + \frac{m(m-1)(m-2)(m-3)(m-4)}{120a^5}x^5 + \cdots$$

・ロト ・回ト ・ヨト ・ヨト

Э

Taylor Series Expansions

Extensions

$(a\mathbb{N}+b)$ -analogue

Example

$$(\frac{a}{a-x})^m = (1 - \frac{x}{a})^{-m}$$

$$= 1 + \frac{m}{a}x + \frac{m(m-1)}{2a^2}x^2 + \frac{m(m-1)(m-2)}{6a^3}x^3$$

$$+ \frac{m(m-1)(m-2)(m-3)}{24a^4}x^4 + \frac{m(m-1)(m-2)(m-3)(m-4)}{120a^5}x^5 + \cdots$$

Notice our numerators are polynomials in *m* and our denominators are $a^n n! = n!_{a\mathbb{N}+b}$.

・ロット (四) (日) (日)

Taylor Series Expansions

Extensions

$(a\mathbb{N}+b)$ -analogue

Example

$$\left(\frac{a}{a-x}\right)^m = \left(1 - \frac{x}{a}\right)^{-m}$$

$$= 1 + \frac{m}{a}x + \frac{m(m-1)}{2a^2}x^2 + \frac{m(m-1)(m-2)}{6a^3}x^3$$

$$+ \frac{m(m-1)(m-2)(m-3)}{24a^4}x^4 + \frac{m(m-1)(m-2)(m-3)(m-4)}{120a^5}x^5 + \cdots$$

$$= \sum_{n=0}^{\infty} \frac{P_{a\mathbb{N}+b,n}(m)}{n!_{a\mathbb{N}+b}}x^n$$

Notice our numerators are polynomials in *m* and our denominators are $a^n n! = n!_{a\mathbb{N}+b}$.

ヘロン 人間 とくほど 人間と

Fac	to	ria	ls
00			

Taylor Series Expansions

Extensions

$2\mathbb{T}$ -analogue

Example

$$cos^m(\sqrt{x}) =$$

Michael R. Pilla Generalizations of the Factorial Function

・ロト ・回ト ・ヨト ・ヨト

Э

$2\mathbb{T}$ -analogue

Example

$$\cos^{m}(\sqrt{x}) = 1 - \frac{m}{2}x + \frac{m+3m(m-1)}{24}x^{2}$$

-

$$-\frac{15m(m-1)+m+15m(m-1)(m-2)}{720}x^3+\cdots$$

・ロト ・回ト ・ヨト ・ヨト

Э

$2\mathbb{T}$ -analogue

Example

$$cos^{m}(\sqrt{x}) = 1 - \frac{m}{2}x + \frac{m+3m(m-1)}{24}x^{2}$$
$$-\frac{15m(m-1)+m+15m(m-1)(m-2)}{720}x^{3} + \cdots$$
$$= \sum_{n=0}^{\infty} \frac{P_{2\mathbb{T},n}(m)}{n!_{2\mathbb{T}}}x^{n}$$

・ロト ・回ト ・ヨト ・ヨト

æ

$2\mathbb{T}$ -analogue

Example

$$cos^{m}(\sqrt{x}) = 1 - \frac{m}{2}x + \frac{m+3m(m-1)}{24}x^{2}$$
$$-\frac{15m(m-1)+m+15m(m-1)(m-2)}{720}x^{3} + \cdots$$
$$= \sum_{n=0}^{\infty} \frac{P_{2\mathbb{T},n}(m)}{n!_{2\mathbb{T}}}x^{n}$$

Note that by allowing multiplication by scalars, the $\mathbb{Z}^2\text{-analogue}$ is

$$2\cos^{m}(\sqrt{x}) = \sum_{n=0}^{\infty} \frac{P_{\mathbb{Z}^2,n}(m)}{n!_{\mathbb{Z}^2}} x^n.$$
Taylor Series Expansions

${\mathbb P}$ -analogue

Example

$$\left(-\frac{\ln(1-x)}{x}\right)^m = 1 + \frac{m}{2}x + \frac{m(3m+5)}{24}x^2 + \frac{m(m^2+5m+6)}{48}x^3 + \cdots$$

・ロト ・回ト ・ヨト ・ヨト

Taylor Series Expansions

\mathbb{P} -analogue

Example

$$\left(-\frac{\ln(1-x)}{x}\right)^m = 1 + \frac{m}{2}x + \frac{m(3m+5)}{24}x^2 + \frac{m(m^2+5m+6)}{48}x^3 + \cdots$$

• Notice that the coefficients in the denominator seem to be the same as the factorials for the set of primes.

イロト イヨト イヨト イヨト

Taylor Series Expansions

${\mathbb P}$ -analogue

Example

$$\left(-\frac{\ln(1-x)}{x}\right)^{m} = 1 + \frac{m}{2}x + \frac{m(3m+5)}{24}x^{2} + \frac{m(m^{2}+5m+6)}{48}x^{3} + \cdots \\ = \sum_{n=0}^{\infty} \frac{P_{\mathbb{P},n}(m)}{n!_{\mathbb{P}}}x^{n}$$

- Notice that the coefficients in the denominator seem to be the same as the factorials for the set of primes.
- It turns out that this is so (Chabert, 2005).

- 4 同 6 4 日 6 4 日 6

Taylor Series Expansions ○○○○● Extensions

Summary of *I*_S-analogues

 $\mathbb{N} \iff n!_{\mathbb{N}} = n! \iff$

- $a\mathbb{N} + b \iff n!_{a\mathbb{N}+b} = a^n n! \iff$
 - $2\mathbb{T} \iff n!_{2\mathbb{T}} = (2n)! \iff$

$$\mathbb{Z}^2 \iff n!_{\mathbb{Z}^2} = \frac{(2n)!}{2} \iff$$

$$aq^{\mathbb{N}} \quad \iff \ n!_{aq^{\mathbb{N}}} = (-aq)^n q^{rac{-n(n+1)}{2}}(q:q)_n \; \iff$$

$$\mathbb{P} \iff n!_{\mathbb{P}} = \prod_{p} p^{(stuff)} \iff$$

・ロト ・回ト ・ヨト ・ヨト

Taylor Series Expansions ○○○○● Extensions

Summary of *I*_S-analogues

- $\mathbb{N} \iff n!_{\mathbb{N}} = n! \iff (e^{\mathsf{x}})^m$
- $a\mathbb{N}+b$ \longleftrightarrow $n!_{a\mathbb{N}+b}=a^nn!$ \longleftrightarrow
 - $2\mathbb{T} \iff n!_{2\mathbb{T}} = (2n)! \iff$
 - $\mathbb{Z}^2 \quad \longleftrightarrow \quad n!_{\mathbb{Z}^2} = \frac{(2n)!}{2} \quad \longleftrightarrow$

$$aq^{\mathbb{N}} \quad \iff \ n!_{aq^{\mathbb{N}}} = (-aq)^n q^{rac{-n(n+1)}{2}}(q:q)_n \; \iff$$

$$\mathbb{P} \iff n!_{\mathbb{P}} = \prod_{p} p^{(stuff)} \iff$$

Taylor Series Expansions ○○○○● Extensions

Summary of *I*_S-analogues

- $\mathbb{N} \quad \longleftrightarrow \quad n!_{\mathbb{N}} = n! \quad \longleftrightarrow \quad (e^{x})^{m}$
- $a\mathbb{N} + b \iff n!_{a\mathbb{N}+b} = a^n n! \iff (\frac{a}{a-x})^m$
 - $2\mathbb{T} \iff n!_{2\mathbb{T}} = (2n)! \iff$
 - $\mathbb{Z}^2 \quad \longleftrightarrow \quad n!_{\mathbb{Z}^2} = \frac{(2n)!}{2} \quad \Longleftrightarrow$

$$\mathsf{aq}^{\mathbb{N}} \quad \nleftrightarrow \quad n!_{\mathsf{aq}^{\mathbb{N}}} = (-\mathsf{aq})^n q^{rac{-n(n+1)}{2}}(q:q)_n \ \bigstar$$

$$\mathbb{P} \iff n!_{\mathbb{P}} = \prod_{p} p^{(stuff)} \iff$$

Taylor Series Expansions ○○○○● Extensions

 $cos^m(\sqrt{x})$

 \longleftrightarrow

・ロト ・回ト ・ヨト ・ヨト

3

Summary of *I*_S-analogues

- $\mathbb{N} \quad \longleftrightarrow \quad n!_{\mathbb{N}} = n! \quad \Longleftrightarrow \quad (e^{x})^{m}$
- $a\mathbb{N} + b \iff n!_{a\mathbb{N}+b} = a^n n! \iff (\frac{a}{a-x})^m$
 - $2\mathbb{T} \iff n!_{2\mathbb{T}} = (2n)!$

$$\mathbb{Z}^2 \quad \longleftrightarrow \quad n!_{\mathbb{Z}^2} = \frac{(2n)!}{2} \quad \longleftrightarrow$$

$$aq^{\mathbb{N}} \quad \iff \ n!_{aq^{\mathbb{N}}} = (-aq)^n q^{rac{-n(n+1)}{2}}(q:q)_n \; \iff$$

$$\mathbb{P} \iff n!_{\mathbb{P}} = \prod_{p} p^{(stuff)} \iff$$

Taylor Series Expansions ○○○○○● Extensions

Summary of *!*_S-analogues

 $\mathbb{N} \iff$ $n!_{\mathbb{N}} = n!$ $(e^{x})^{m}$ $\leftrightarrow \rightarrow$ $a\mathbb{N} + b \iff$ $\leftrightarrow \qquad \left(\frac{a}{a}\right)^m$ $n!_{a\mathbb{N}+b} = a^n n!$ 2⊤ $\leftrightarrow \to \cos^m(\sqrt{x})$ $n!_{2\mathbb{T}} = (2n)!$ \longleftrightarrow $\mathbb{Z}^2 \iff$ $n!_{\mathbb{Z}^2} = \frac{(2n)!}{2}$ $\iff 2\cos^m(\sqrt{x})$ $aq^{\mathbb{N}} \quad \iff \quad n!_{aq^{\mathbb{N}}} = (-aq)^n q^{\frac{-n(n+1)}{2}} (q:q)_n \quad \iff$ $n!_{\mathbb{P}} = \prod_{p} p^{(stuff)}$ ₽ \longleftrightarrow $\leftrightarrow \rightarrow$

イロン イボン イヨン イヨン 三日

Taylor Series Expansions ○○○○● Extensions

Summary of 1_S-analogues

 $\mathbb{N} \iff$ $n!_{\mathbb{N}} = n!$ $\leftrightarrow (e^{x})^{m}$ $a\mathbb{N} + b \iff$ $n!_{a\mathbb{N}+b} = a^n n!$ $\leftrightarrow \qquad \left(\frac{a}{2}\right)^m$ 2⊤ $\leftrightarrow \to \cos^m(\sqrt{x})$ $n!_{2\mathbb{T}} = (2n)!$ \longleftrightarrow $n!_{\mathbb{Z}^2} = \frac{(2n)!}{2}$ $\mathbb{Z}^2 \quad \longleftrightarrow$ $\iff 2\cos^m(\sqrt{x})$ $aq^{\mathbb{N}} \quad \iff \quad n!_{aq^{\mathbb{N}}} = (-aq)^n q^{\frac{-n(n+1)}{2}} (q:q)_n \quad \iff$ $\leftrightarrow \left(-\frac{\ln(1-x)}{x}\right)^m$ $n!_{\mathbb{P}} = \prod_{p} p^{(stuff)}$ ₽ \longleftrightarrow

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○○

Taylor Series Expansions ○○○○○● Extensions

Summary of 1_S-analogues

- $\mathbb{N} \iff n!_{\mathbb{N}} = n! \iff (e^{x})^{m}$ $a\mathbb{N} + b \iff n!_{a\mathbb{N}+b} = a^{n}n! \iff (\frac{a}{a-x})^{m}$ $2\mathbb{T} \iff n!_{2\mathbb{T}} = (2n)! \iff \cos^{m}(\sqrt{x})$ $\mathbb{Z}^{2} \iff n!_{\mathbb{Z}^{2}} = \frac{(2n)!}{2} \iff 2\cos^{m}(\sqrt{x})$ $aq^{\mathbb{N}} \iff n!_{aq^{\mathbb{N}}} = (-aq)^{n}q^{\frac{-n(n+1)}{2}}(q:q)_{n} \iff ?$
 - $\mathbb{P} \quad \iff \quad n!_{\mathbb{P}} = \prod_{p} p^{(stuff)} \quad \iff \quad \left(-\frac{\ln(1-x)}{x}\right)^{m}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○○

Taylor Series Expansions ○○○○● Extensions

Summary of 1_S-analogues

 $\mathbb{N} \iff$ $n!_{\mathbb{N}} = n!$ $(e^{x})^{m}$ $\leftrightarrow \rightarrow$ $a\mathbb{N} + b \iff$ $n!_{a\mathbb{N}+b} = a^n n!$ $\leftrightarrow \qquad \left(\frac{a}{2}\right)^m$ 2⊤ $n!_{2\mathbb{T}} = (2n)!$ $\leftrightarrow cos^m(\sqrt{x})$ \longleftrightarrow $n!_{\mathbb{Z}^2} = \frac{(2n)!}{2}$ $\mathbb{Z}^2 \quad \longleftrightarrow$ $\iff 2\cos^m(\sqrt{x})$ $aq^{\mathbb{N}} \quad \iff \quad n!_{aq^{\mathbb{N}}} = (-aq)^n q^{\frac{-n(n+1)}{2}} (q:q)_n \quad \iff$? $\leftrightarrow \left(-\frac{\ln(1-x)}{x}\right)^m$ $n!_{\mathbb{P}} = \prod_{p} p^{(stuff)}$ ₽ \longleftrightarrow $(tan^{-1}(x))^m$

<ロ> (四) (四) (注) (三) (三)

Taylor Series Expansions ○○○○● Extensions

Summary of 1_S-analogues

 $\mathbb{N} \iff$ $n!_{\mathbb{N}} = n!$ $\leftrightarrow (e^{x})^{m}$ $a\mathbb{N} + b \iff$ $n!_{a\mathbb{N}+b} = a^n n!$ $\leftrightarrow \qquad \left(\frac{a}{2}\right)^m$ 2⊤ $n!_{2\mathbb{T}} = (2n)!$ $\leftrightarrow cos^m(\sqrt{x})$ $\leftrightarrow \rightarrow$ $n!_{\mathbb{Z}^2} = \frac{(2n)!}{2}$ $\mathbb{Z}^2 \quad \longleftrightarrow$ $\iff 2\cos^m(\sqrt{x})$ $aq^{\mathbb{N}} \quad \iff \quad n!_{aq^{\mathbb{N}}} = (-aq)^n q^{\frac{-n(n+1)}{2}} (q:q)_n \quad \iff$ $\leftrightarrow \left(-\frac{\ln(1-x)}{x}\right)^m$ $n!_{\mathbb{P}} = \prod_{p} p^{(stuff)}$ \mathbb{P} \longleftrightarrow ? $\leftrightarrow (tan^{-1}(x))^m$ $n!_{7}$ \longleftrightarrow

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

Fa	ct	or	ia	ls	
00					

Taylor Series Expansions

Extensions •00

Future Work

Conjecture A

Conjecture B

Michael R. Pilla Generalizations of the Factorial Function

・ロン ・四 と ・ ヨ と ・ モン・

Factorials	Examples 0000000	Taylor Series Expansions	Extensions ●○○
	v la		

Conjecture A

Every subset of \mathbb{N} corresponds to a function.

Conjecture B

Every analytic function of \mathbb{N} .

corresponds to a subset

・ロン ・回と ・ヨン・

Э

Factorials	Examples 0000000	Taylor Series Expansions	Extensions ●○○
Futuro Work			

Conjecture A

Every subset of $\ensuremath{\mathbb{N}}$ corresponds to a function. Issues:

Conjecture B

Every analytic function of \mathbb{N} .

corresponds to a subset

・ロン ・回と ・ヨン・

Э

Factorials	Examples	Taylor Series Expansions	Extensions
			•00

Conjecture A

Every subset of $\ensuremath{\mathbb{N}}$ corresponds to a function. Issues:

• They probably won't be classical functions.

Conjecture B

Every analytic function of \mathbb{N} .

corresponds to a subset

- 4 回 2 - 4 回 2 - 4 回 2 - 4

э

Factorials	Examples	Taylor Series Expansions	Extensions
			000

Conjecture A

Every subset of $\ensuremath{\mathbb{N}}$ corresponds to a function. Issues:

- They probably won't be classical functions.
- Difficulty: Finding the correct polynomials in the numerator.

э

Conjecture A

Every subset of $\ensuremath{\mathbb{N}}$ corresponds to a function. Issues:

- They probably won't be classical functions.
- Difficulty: Finding the correct polynomials in the numerator.
- Is it theoretically useful to allow for constants such as for \mathbb{Z}^2 ?

Conjecture B

Every analytic function of \mathbb{N} .

corresponds to a subset

イロン イヨン イヨン イヨン

Fac	to	ri	а	ls	
00					

Conjecture A

Every subset of $\ensuremath{\mathbb{N}}$ corresponds to a function. Issues:

- They probably won't be classical functions.
- Difficulty: Finding the correct polynomials in the numerator.
- Is it theoretically useful to allow for constants such as for \mathbb{Z}^2 ?

Conjecture B

Every analytic function of \mathbb{N} . Issues:

corresponds to a subset

- - 4 回 ト - 4 回 ト

Conjecture A

Every subset of $\ensuremath{\mathbb{N}}$ corresponds to a function. Issues:

- They probably won't be classical functions.
- Difficulty: Finding the correct polynomials in the numerator.
- Is it theoretically useful to allow for constants such as for \mathbb{Z}^2 ?

Conjecture B

Every analytic function (with conditions?) corresponds to a subset of \mathbb{N} . Issues:

- 4 同 6 4 日 6 4 日 6

Conjecture A

Every subset of $\ensuremath{\mathbb{N}}$ corresponds to a function. Issues:

- They probably won't be classical functions.
- Difficulty: Finding the correct polynomials in the numerator.
- Is it theoretically useful to allow for constants such as for \mathbb{Z}^2 ?

Conjecture B

Every analytic function (with conditions?) corresponds to a subset of $\mathbb N.$

Issues:

• What are the conditions?

- 4 同 6 4 日 6 4 日 6

Taylor Series Expansions

Extensions

If The Conjectures Are True...

・ 回 と ・ ヨ と ・ ヨ と

Factorials	Examples 0000000	Taylor Series Expansions	Extensions ○○●
Thanks			

References

Bhargava, M. (2000). The factorial function and generalizations. The American Mathematical Monthly, 107(9), 783-799.

Chabert, J.L. (2007). Integer-valued polynomials on prime numbers and logarithm power expansion. European Journal of Combinatorics, 28(3), 754-761.

Factorials	Examples 0000000	Taylor Series Expansions	Extensions ○○●
Thanks			

References

Bhargava, M. (2000). The factorial function and generalizations. The American Mathematical Monthly, 107(9), 783-799.

Chabert, J.L. (2007). Integer-valued polynomials on prime numbers and logarithm power expansion. European Journal of Combinatorics, 28(3), 754-761.

• Thanks Professor Eric Errthum!

Factorials	Examples 0000000	Taylor Series Expansions	Extensions ○○●
Thanks			

References

Bhargava, M. (2000). The factorial function and generalizations. The American Mathematical Monthly, 107(9), 783-799.

Chabert, J.L. (2007). Integer-valued polynomials on prime numbers and logarithm power expansion. European Journal of Combinatorics, 28(3), 754-761.

• Thanks Professor Eric Errthum!

Questions