Generalized Factorials and Taylor Expansions

Michael R. Pilla
Winona State University

April 16, 2010

Factorials

- Recall the definition of a factorial

$$
n!=n \cdot(n-1) \cdots 2 \cdot 1=
$$

Factorials

- Recall the definition of a factorial

$$
n!=n \cdot(n-1) \cdots 2 \cdot 1=(n-0)(n-1)(n-2) \cdots(n-(n-2))(n-(n-1)) .
$$

Factorials

- Recall the definition of a factorial
$n!=n \cdot(n-1) \cdots 2 \cdot 1=(n-0)(n-1)(n-2) \cdots(n-(n-2))(n-(n-1))$.
- For $S=\left\{a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right\} \subseteq \mathbb{N}$,

Define $n!_{S}=\left(a_{n}-a_{0}\right)\left(a_{n}-a_{1}\right) \cdots\left(a_{n}-a_{n-1}\right)$.

Factorials

- Recall the definition of a factorial

$$
n!=n \cdot(n-1) \cdots 2 \cdot 1=(n-0)(n-1)(n-2) \cdots(n-(n-2))(n-(n-1)) .
$$

- For $S=\left\{a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right\} \subseteq \mathbb{N}$,

Define $n!_{S}=\left(a_{n}-a_{0}\right)\left(a_{n}-a_{1}\right) \cdots\left(a_{n}-a_{n-1}\right)$.

Pros:

Factorials

- Recall the definition of a factorial

$$
n!=n \cdot(n-1) \cdots 2 \cdot 1=(n-0)(n-1)(n-2) \cdots(n-(n-2))(n-(n-1)) .
$$

- For $S=\left\{a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right\} \subseteq \mathbb{N}$,

Define $n!_{S}=\left(a_{n}-a_{0}\right)\left(a_{n}-a_{1}\right) \cdots\left(a_{n}-a_{n-1}\right)$.

Pros:

- We have a nice formula.

Factorials

- Recall the definition of a factorial
$n!=n \cdot(n-1) \cdots 2 \cdot 1=(n-0)(n-1)(n-2) \cdots(n-(n-2))(n-(n-1))$.
- For $S=\left\{a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right\} \subseteq \mathbb{N}$,

Define $n!_{S}=\left(a_{n}-a_{0}\right)\left(a_{n}-a_{1}\right) \cdots\left(a_{n}-a_{n-1}\right)$.

Pros:

- We have a nice formula.
- It works on subsets of \mathbb{N}.

Factorials

- Recall the definition of a factorial
$n!=n \cdot(n-1) \cdots 2 \cdot 1=(n-0)(n-1)(n-2) \cdots(n-(n-2))(n-(n-1))$.
- For $S=\left\{a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right\} \subseteq \mathbb{N}$,

Define $n!_{S}=\left(a_{n}-a_{0}\right)\left(a_{n}-a_{1}\right) \cdots\left(a_{n}-a_{n-1}\right)$.

Cons:

Pros:

- We have a nice formula.
- It works on subsets of \mathbb{N}.

Factorials

- Recall the definition of a factorial
$n!=n \cdot(n-1) \cdots 2 \cdot 1=(n-0)(n-1)(n-2) \cdots(n-(n-2))(n-(n-1))$.
- For $S=\left\{a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right\} \subseteq \mathbb{N}$,

Define $n!_{S}=\left(a_{n}-a_{0}\right)\left(a_{n}-a_{1}\right) \cdots\left(a_{n}-a_{n-1}\right)$.

Cons:

Pros:

- We have a nice formula.
- It is not theoretically useful.
- It works on subsets of \mathbb{N}.

Factorials

- Recall the definition of a factorial
$n!=n \cdot(n-1) \cdots 2 \cdot 1=(n-0)(n-1)(n-2) \cdots(n-(n-2))(n-(n-1))$.
- For $S=\left\{a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right\} \subseteq \mathbb{N}$,

Define $n!_{S}=\left(a_{n}-a_{0}\right)\left(a_{n}-a_{1}\right) \cdots\left(a_{n}-a_{n-1}\right)$.

Cons:

Pros:

- We have a nice formula.
- It works on subsets of \mathbb{N}.
- It is not theoretically useful.
- What about the order of the subset?

Generalized Factorials

- Bhargava: Let's look at prime factorizations and play a game called p-ordering for each prime p.

Generalized Factorials

- Bhargava: Let's look at prime factorizations and play a game called p-ordering for each prime p.
- If the ordering works for all primes simultaneosly, then we can achieve nice formulas.

Generalized Factorials

- Bhargava: Let's look at prime factorizations and play a game called p-ordering for each prime p.
- If the ordering works for all primes simultaneosly, then we can achieve nice formulas.

Theorem

If $S=\left\{a_{i}\right\}$ is p-ordered for all primes simultaneously then

$$
n!_{S}=\left|\left(a_{n}-a_{0}\right)\left(a_{n}-a_{1}\right) \cdots\left(a_{n}-a_{n-1}\right)\right| .
$$

Generalized Factorials

- Bhargava: Let's look at prime factorizations and play a game called p-ordering for each prime p.
- If the ordering works for all primes simultaneosly, then we can achieve nice formulas.

Theorem

If $S=\left\{a_{i}\right\}$ is p-ordered for all primes simultaneously then

$$
n!_{S}=\left|\left(a_{n}-a_{0}\right)\left(a_{n}-a_{1}\right) \cdots\left(a_{n}-a_{n-1}\right)\right| .
$$

- If a subset cannot be simultaneously ordered, the formulas are ugly (if and when they exist) and the factorials difficult to calculate.

Generalized Factorials

- Bhargava: Let's look at prime factorizations and play a game called p-ordering for each prime p.
- If the ordering works for all primes simultaneosly, then we can achieve nice formulas.

Theorem

If $S=\left\{a_{i}\right\}$ is p-ordered for all primes simultaneously then

$$
n!!_{S}=\left|\left(a_{n}-a_{0}\right)\left(a_{n}-a_{1}\right) \cdots\left(a_{n}-a_{n-1}\right)\right| .
$$

- If a subset cannot be simultaneously ordered, the formulas are ugly (if and when they exist) and the factorials difficult to calculate.
- Goal: Extend factorials to "nice", "natural" subsets of \mathbb{N} that have closed formulas.

Arithmetic Sets

Example

- Consider the arithmetic set $A=\{2,9,16,23, \ldots\}$ (i.e. all integers $2 \bmod 7$). This is p-ordered for all primes simultaneously. Thus

Arithmetic Sets

Example

- Consider the arithmetic set $A=\{2,9,16,23, \ldots\}$ (i.e. all integers $2 \bmod 7$). This is p-ordered for all primes simultaneously. Thus
- $1!_{A}=(9-2)=7$

Arithmetic Sets

Example

- Consider the arithmetic set $A=\{2,9,16,23, \ldots\}$ (i.e. all integers $2 \bmod 7$). This is p-ordered for all primes simultaneously. Thus
- $1!_{A}=(9-2)=7$
- $2!_{A}=(16-2)(16-9)=98$

Arithmetic Sets

Example

- Consider the arithmetic set $A=\{2,9,16,23, \ldots\}$ (i.e. all integers $2 \bmod 7$). This is p-ordered for all primes simultaneously. Thus
- $1!_{A}=(9-2)=7$
- $2!_{A}=(16-2)(16-9)=98$
- $3!_{A}=(23-2)(23-9)(23-16)=2058$

Arithmetic Sets

Example

- Consider the arithmetic set $A=\{2,9,16,23, \ldots\}$ (i.e. all integers $2 \bmod 7$). This is p-ordered for all primes simultaneously. Thus
- $1!_{A}=(9-2)=7=7^{1} 1$!
- $2!_{A}=(16-2)(16-9)=98=7^{2} 2$!
- $3!_{A}=(23-2)(23-9)(23-16)=2058=7^{3} 3!$
- $n!_{A}=7^{n} n!$

Arithmetic Sets

Example

- Consider the arithmetic set $A=\{2,9,16,23, \ldots\}$ (i.e. all integers $2 \bmod 7$). This is p-ordered for all primes simultaneously. Thus
- $1!_{A}=(9-2)=7=7^{1} 1$!
- $2!_{A}=(16-2)(16-9)=98=7^{2} 2$!
- $3!_{A}=(23-2)(23-9)(23-16)=2058=7^{3} 3$!
- $n!_{A}=7^{n} n!$

Example

Let $S=a \mathbb{N}+b$ of all integers b mod a. The natural ordering is p-ordered for all primes simultaneously. Thus

$$
n!_{a \mathbb{N}+b}=a^{n} n!
$$

Set of Squares

Example

- The set $\mathbb{Z}^{2}=\{0,1,4,9,16, \ldots\}$ of square numbers admits a simultaneous p-ordering. Thus

Set of Squares

Example

- The set $\mathbb{Z}^{2}=\{0,1,4,9,16, \ldots\}$ of square numbers admits a simultaneous p-ordering. Thus
- $1!_{\mathbb{Z}^{2}}=(1-0)=1$

Set of Squares

Example

- The set $\mathbb{Z}^{2}=\{0,1,4,9,16, \ldots\}$ of square numbers admits a simultaneous p-ordering. Thus
- $1!_{\mathbb{Z}^{2}}=(1-0)=1$
- $2!_{\mathbb{Z}^{2}}=(4-0)(4-1)=12$

Set of Squares

Example

- The set $\mathbb{Z}^{2}=\{0,1,4,9,16, \ldots\}$ of square numbers admits a simultaneous p-ordering. Thus
- $1!_{\mathbb{Z}^{2}}=(1-0)=1$
- $2!_{\mathbb{Z}^{2}}=(4-0)(4-1)=12$
- $3!_{\mathbb{Z}^{2}}=(9-0)(9-1)(9-4)=360$

Set of Squares

Example

- The set $\mathbb{Z}^{2}=\{0,1,4,9,16, \ldots\}$ of square numbers admits a simultaneous p-ordering. Thus
- $1!_{\mathbb{Z}^{2}}=(1-0)=1$
- $2!_{\mathbb{Z}^{2}}=(4-0)(4-1)=12$
- $3!_{\mathbb{Z}^{2}}=(9-0)(9-1)(9-4)=360$
- $4!_{\mathbb{Z}^{2}}=(16-0)(16-1)(16-4)(16-9)=20160$

Set of Squares

Example

- The set $\mathbb{Z}^{2}=\{0,1,4,9,16, \ldots\}$ of square numbers admits a simultaneous p-ordering. Thus
- $1!_{\mathbb{Z}^{2}}=(1-0)=1$
- $2!_{\mathbb{Z}^{2}}=(4-0)(4-1)=12$
- $3!_{\mathbb{Z}^{2}}=(9-0)(9-1)(9-4)=360$
- $4!_{\mathbb{Z}^{2}}=(16-0)(16-1)(16-4)(16-9)=20160$
$n!\mathbb{Z}_{\mathbb{Z}^{2}}=\left(n^{2}-0\right)\left(n^{2}-1\right)\left(n^{2}-4\right) \cdots\left(n^{2}-(n-1)^{2}\right)$

Set of Squares

Example

- The set $\mathbb{Z}^{2}=\{0,1,4,9,16, \ldots\}$ of square numbers admits a simultaneous p-ordering. Thus
- $1!_{\mathbb{Z}^{2}}=(1-0)=1$
- $2!_{\mathbb{Z}^{2}}=(4-0)(4-1)=12$
- $3!_{\mathbb{Z}^{2}}=(9-0)(9-1)(9-4)=360$
- $4!_{\mathbb{Z}^{2}}=(16-0)(16-1)(16-4)(16-9)=20160$

$$
\begin{aligned}
n!_{\mathbb{Z}^{2}} & =\left(n^{2}-0\right)\left(n^{2}-1\right)\left(n^{2}-4\right) \cdots\left(n^{2}-(n-1)^{2}\right) \\
& =(n-0)(n+0)(n-1)(n+1) \cdots(n-(n-1))(n+(n-1)) \\
& =\frac{2 n}{2}(2 n-1)(2 n-2) \cdots(n)(n-1) \cdots(1) \\
& =\frac{(2 n)!}{2}
\end{aligned}
$$

Twice Triangulars (Squares Modified)

Example

- Likewise, one can show the set $2 \mathbb{T}=\left\{n^{2}+n \mid n \in \mathbb{N}\right\}=\{0,2,6,12,20, \ldots\}$ admits a simultaneous p-ordering. Thus

Twice Triangulars (Squares Modified)

Example

- Likewise, one can show the set $2 \mathbb{T}=\left\{n^{2}+n \mid n \in \mathbb{N}\right\}=\{0,2,6,12,20, \ldots\}$ admits a simultaneous p-ordering. Thus
- $1!_{2 \mathbb{T}}=(2-0)=2$

Twice Triangulars (Squares Modified)

Example

- Likewise, one can show the set $2 \mathbb{T}=\left\{n^{2}+n \mid n \in \mathbb{N}\right\}=\{0,2,6,12,20, \ldots\}$ admits a simultaneous p-ordering. Thus
- $1!_{2 \mathbb{T}}=(2-0)=2$
- $2!_{2 \mathbb{T}}=(6-0)(6-2)=24$

Twice Triangulars (Squares Modified)

Example

- Likewise, one can show the set
$2 \mathbb{T}=\left\{n^{2}+n \mid n \in \mathbb{N}\right\}=\{0,2,6,12,20, \ldots\}$ admits a simultaneous p-ordering. Thus
- $1!_{2 \mathbb{T}}=(2-0)=2$
- $2!_{2 \mathbb{T}}=(6-0)(6-2)=24$
- $3!_{2 \mathbb{T}}=(12-0)(12-2)(12-6)=720$

Twice Triangulars (Squares Modified)

Example

- Likewise, one can show the set $2 \mathbb{T}=\left\{n^{2}+n \mid n \in \mathbb{N}\right\}=\{0,2,6,12,20, \ldots\}$ admits a simultaneous p-ordering. Thus
- $1!_{2 \mathbb{T}}=(2-0)=2$
- $2!_{2 \mathbb{T}}=(6-0)(6-2)=24$
- $3!_{2 \mathrm{~T}}=(12-0)(12-2)(12-6)=720$
- $4!_{2 \mathbb{T}}=(20-0)(20-2)(20-6)(20-12)=40320$

Twice Triangulars (Squares Modified)

Example

- Likewise, one can show the set $2 \mathbb{T}=\left\{n^{2}+n \mid n \in \mathbb{N}\right\}=\{0,2,6,12,20, \ldots\}$ admits a simultaneous p-ordering. Thus
- $1!_{2 \mathbb{T}}=(2-0)=2$
- $2!_{2 \mathbb{T}}=(6-0)(6-2)=24$
- $3!_{2 \mathbb{T}}=(12-0)(12-2)(12-6)=720$
- $4!_{2 \mathbb{T}}=(20-0)(20-2)(20-6)(20-12)=40320$
- $n!_{2 \mathbb{T}}=(2 n)$!

A Geometric Progression

Example

- Consider the geometric progression $G=\left\{5 \cdot 3^{n}\right\}=\{5,15,45,135,405, \ldots\}$. This set admits a simultaneous p-ordering and thus

A Geometric Progression

Example

- Consider the geometric progression $G=\left\{5 \cdot 3^{n}\right\}=\{5,15,45,135,405, \ldots\}$. This set admits a simultaneous p-ordering and thus
- $1!_{G}=(15-5)=10$

A Geometric Progression

Example

- Consider the geometric progression $G=\left\{5 \cdot 3^{n}\right\}=\{5,15,45,135,405, \ldots\}$. This set admits a simultaneous p-ordering and thus
- $1!_{G}=(15-5)=10$
- $2!_{G}=(45-5)(45-15)=1200$

A Geometric Progression

Example

- Consider the geometric progression $G=\left\{5 \cdot 3^{n}\right\}=\{5,15,45,135,405, \ldots\}$. This set admits a simultaneous p-ordering and thus
- $1!_{G}=(15-5)=10$
- $2!_{G}=(45-5)(45-15)=1200$
- $3!_{G}=(135-5)(135-15)(135-45)=1404000$

A Geometric Progression

Example

- Consider the geometric progression $G=\left\{5 \cdot 3^{n}\right\}=\{5,15,45,135,405, \ldots\}$. This set admits a simultaneous p-ordering and thus
- $1!_{G}=(15-5)=10$
- $2!_{G}=(45-5)(45-15)=1200$
- $3!_{G}=(135-5)(135-15)(135-45)=1404000$
- $4!_{G}=(405-5)(405-15)(405-45)(405-135)=15163200000$

A General Geometric Progression

Example

The geometric progression $a q^{\mathbb{N}}$ gives a simultaneous p-ordering. Thus

A General Geometric Progression

Example

The geometric progression $a q^{\mathbb{N}}$ gives a simultaneous p-ordering. Thus

$$
n!_{a q^{\mathbb{N}}}=\left(a q^{n}-a\right)\left(a q^{n}-a q\right) \cdots\left(a q^{n}-a q^{n-1}\right)
$$

A General Geometric Progression

Example

The geometric progression $a q^{\mathbb{N}}$ gives a simultaneous p-ordering. Thus

$$
\begin{aligned}
n!_{a q^{\mathbb{N}}} & =\left(a q^{n}-a\right)\left(a q^{n}-a q\right) \cdots\left(a q^{n}-a q^{n-1}\right) \\
& \left.=a^{n} q^{n}\left(1-q^{-n}\right)\left(1-q^{1-n}\right) \cdots\left(1-q^{-2}\right)\left(1-q^{-1}\right)\right)
\end{aligned}
$$

A General Geometric Progression

Example

The geometric progression $a q^{\mathbb{N}}$ gives a simultaneous p-ordering. Thus

$$
\begin{aligned}
n!_{a q^{\mathbb{N}}} & =\left(a q^{n}-a\right)\left(a q^{n}-a q\right) \cdots\left(a q^{n}-a q^{n-1}\right) \\
& \left.=a^{n} q^{n}\left(1-q^{-n}\right)\left(1-q^{1-n}\right) \cdots\left(1-q^{-2}\right)\left(1-q^{-1}\right)\right) \\
& =(-a q)^{n} q^{\frac{-n(n+1)}{2}}(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)
\end{aligned}
$$

A General Geometric Progression

Example

The geometric progression $a q^{\mathbb{N}}$ gives a simultaneous p-ordering. Thus

$$
\begin{aligned}
n!_{a q^{\mathbb{N}}} & =\left(a q^{n}-a\right)\left(a q^{n}-a q\right) \cdots\left(a q^{n}-a q^{n-1}\right) \\
& \left.=a^{n} q^{n}\left(1-q^{-n}\right)\left(1-q^{1-n}\right) \cdots\left(1-q^{-2}\right)\left(1-q^{-1}\right)\right) \\
& =(-a q)^{n} q^{\frac{-n(n+1)}{2}}(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right) \\
& =(-a q)^{n} q^{\frac{-n(n+1)}{2}}(q: q)_{n}
\end{aligned}
$$

where $(q: q)_{n}$ is the q-Pochhammer symbol.

Non-Simultaneous Sets

Example

- While it can be shown that the primes do NOT admit a simultaneous p-ordering, Bhargava gives an intricate formula to calculate them.

Non-Simultaneous Sets

Example

- While it can be shown that the primes do NOT admit a simultaneous p-ordering, Bhargava gives an intricate formula to calculate them.

$$
n!_{\mathbb{P}}=\prod_{p} p^{\left\lfloor\frac{n-1}{p-1}\right\rfloor+\left\lfloor\frac{n-1}{p(p-1)}\right\rfloor+\left\lfloor\frac{n-1}{p^{2}(p-1)}\right\rfloor+\cdots}
$$

Non-Simultaneous Sets

Example

- While it can be shown that the primes do NOT admit a simultaneous p-ordering, Bhargava gives an intricate formula to calculate them.

$$
n!_{\mathbb{P}}=\prod_{p} p^{\left\lfloor\frac{n-1}{p-1}\right\rfloor+\left\lfloor\frac{n-1}{p(p-1)}\right\rfloor+\left\lfloor\frac{n-1}{p^{2}(p-1)}\right\rfloor+\cdots}
$$

- $\{n!\mathbb{P}\}=\{1,2,24,48,5670, \ldots\}$

Non-Simultaneous Sets

Example

- While it can be shown that the primes do NOT admit a simultaneous p-ordering, Bhargava gives an intricate formula to calculate them.

$$
n!_{\mathbb{P}}=\prod_{p} p^{\left\lfloor\frac{n-1}{p-1}\right\rfloor+\left\lfloor\frac{n-1}{p(p-1)}\right\rfloor+\left\lfloor\frac{n-1}{p^{2}(p-1)}\right\rfloor+\cdots}
$$

- $\{n!\mathbb{P}\}=\{1,2,24,48,5670, \ldots\}$

Example

- The set of cubes \mathbb{N}^{3} does not admit a simultaneous p-ordering and has no nice formula.

Non-Simultaneous Sets

Example

- While it can be shown that the primes do NOT admit a simultaneous p-ordering, Bhargava gives an intricate formula to calculate them.

$$
n!\prod_{\mathbb{P}}=\prod_{p} p^{\left\lfloor\frac{n-1}{p-1}\right\rfloor+\left\lfloor\frac{n-1}{p(p-1)}\right\rfloor+\left\lfloor\frac{n-1}{p^{2}(p-1)}\right\rfloor+\cdots}
$$

- $\{n!\mathbb{P}\}=\{1,2,24,48,5670, \ldots\}$

Example

- The set of cubes \mathbb{N}^{3} does not admit a simultaneous p-ordering and has no nice formula.
- $\left\{n!_{\mathbb{N}^{3}}\right\}=\{1,2,504,504,35280, \ldots\}$

Summary of Examples

$$
\mathbb{N} \quad \leftrightarrow u \rightarrow \quad n!_{\mathbb{N}}=n!
$$

Summary of Examples

$$
\begin{array}{rlrl}
\mathbb{N} & n!_{\mathbb{N}} & =n! \\
a \mathbb{N}+b & n
\end{array}
$$

Summary of Examples

$$
\begin{array}{ccc}
\mathbb{N} & n!_{\mathbb{N}}=n! \\
a \mathbb{N}+b & \text { ぃ } \\
2 \mathbb{T} & n!_{a \mathbb{N}+b}=a^{n} n! \\
n!_{2 \mathbb{T}}=(2 n)!
\end{array}
$$

Summary of Examples

$$
\begin{array}{ccc}
\mathbb{N} & n!_{\mathbb{N}}=n! \\
a \mathbb{N}+b & \text { «n } & n!_{a \mathbb{N}+b}=a^{n} n! \\
2 \mathbb{T} & \text { «ぃ } & n!_{2 \mathbb{T}}=(2 n)! \\
\mathbb{Z}^{2} & n \nmid \mathbb{Z}^{2}=\frac{(2 n)!}{2}
\end{array}
$$

Summary of Examples

$$
\begin{aligned}
& \mathbb{N} \quad \leftrightarrow \\
& n!_{\mathbb{N}}=n! \\
& a \mathbb{N}+b \quad u \\
& n!{ }_{a \mathbb{N}+b}=a^{n} n! \\
& 2 T \text { ~ } \\
& n!_{2 \mathbb{T}}=(2 n)! \\
& \mathbb{Z}^{2} \quad \leftrightarrow \\
& n!\mathbb{Z}^{2}=\frac{(2 n)!}{2} \\
& a q^{\mathbb{N}} \quad \longleftrightarrow \leadsto n!_{a q^{\mathbb{N}}}=(-a q)^{n} q^{\frac{-n(n+1)}{2}}(q: q)_{n}
\end{aligned}
$$

Summary of Examples

$$
\begin{aligned}
& \mathbb{N} \quad u \rightarrow \\
& n!_{\mathbb{N}}=n! \\
& a \mathbb{N}+b \quad u \\
& n!{ }_{a \mathbb{N}+b}=a^{n} n! \\
& 2 T \text { ~ } \\
& n!_{2 \mathbb{T}}=(2 n)! \\
& \mathbb{Z}^{2} \quad \leftrightarrow \\
& n!\mathbb{Z}^{2}=\frac{(2 n)!}{2} \\
& a q^{\mathbb{N}} \quad \longleftrightarrow \leadsto n!_{a q^{\mathbb{N}}}=(-a q)^{n} q^{\frac{-n(n+1)}{2}}(q: q)_{n} \\
& \mathbb{P} \text { un } \\
& n!\mathbb{P}=\prod_{p} p^{(s t u f f)}
\end{aligned}
$$

Question

Question

Recall that one can write e^{x} as a Taylor series.

Question

Recall that one can write e^{x} as a Taylor series. That is

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

Question

Recall that one can write e^{x} as a Taylor series. That is

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

Question: What is the $!_{S}$-analogue to this equation?

Question

Recall that one can write e^{x} as a Taylor series. That is

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

Question: What is the $!_{S}$-analogue to this equation?

As it turns out, this is the wrong question to ask.

Right Question

Raising to the power of m, we can write $\left(e^{x}\right)^{m}$ as follows:

Right Question

Raising to the power of m, we can write $\left(e^{x}\right)^{m}$ as follows:

$$
\left(e^{x}\right)^{m}=e^{m x}=\sum_{n=0}^{\infty} \frac{m^{n}}{n!} x^{n}=1+\frac{m}{1!} x+\frac{m^{2}}{2!} x^{2}+\frac{m^{3}}{3!} x^{3}+\cdots
$$

Right Question

Raising to the power of m, we can write $\left(e^{x}\right)^{m}$ as follows:

$$
\left(e^{x}\right)^{m}=e^{m x}=\sum_{n=0}^{\infty} \frac{m^{n}}{n!} x^{n}=1+\frac{m}{1!} x+\frac{m^{2}}{2!} x^{2}+\frac{m^{3}}{3!} x^{3}+\cdots
$$

Right Question: What is the $!_{s}$-analogue of this equation?

Right Question

Raising to the power of m, we can write $\left(e^{x}\right)^{m}$ as follows:

$$
\left(e^{x}\right)^{m}=e^{m x}=\sum_{n=0}^{\infty} \frac{m^{n}}{n!} x^{n}=1+\frac{m}{1!} x+\frac{m^{2}}{2!} x^{2}+\frac{m^{3}}{3!} x^{3}+\cdots
$$

Right Question: What is the $!_{s}$-analogue of this equation?

Goal:

- 1) The numerator of each "coefficient" is a polynomial in m.
- 2) The denominator of each "coefficient" is a factorial.

Taylor Series Expansions

$00 \bullet 000$

$(a \mathbb{N}+b)$-analogue

Example

$$
\left(\frac{a}{a-x}\right)^{m}=\left(1-\frac{x}{a}\right)^{-m}
$$

$(a \mathbb{N}+b)$-analogue

Example

$$
\begin{aligned}
\left(\frac{a}{a-x}\right)^{m} & =\left(1-\frac{x}{a}\right)^{-m} \\
& =1+\frac{m}{a} x+\frac{m(m-1)}{2 a^{2}} x^{2}+\frac{m(m-1)(m-2)}{6 a^{3}} x^{3} \\
& +\frac{m(m-1)(m-2)(m-3)}{24 a^{4}} x^{4}+\frac{m(m-1)(m-2)(m-3)(m-4)}{120 a^{5}} x^{5}+\cdots
\end{aligned}
$$

$(a \mathbb{N}+b)$-analogue

Example

$$
\begin{aligned}
\left(\frac{a}{a-x}\right)^{m} & =\left(1-\frac{x}{a}\right)^{-m} \\
& =1+\frac{m}{a} x+\frac{m(m-1)}{2 a^{2}} x^{2}+\frac{m(m-1)(m-2)}{6 a^{3}} x^{3} \\
& +\frac{m(m-1)(m-2)(m-3)}{24 a^{4}} x^{4}+\frac{m(m-1)(m-2)(m-3)(m-4)}{120 a^{5}} x^{5}+\cdots
\end{aligned}
$$

Notice our numerators are polynomials in m and our denominators are $a^{n} n!=n!{ }_{a \mathbb{N}+b}$.

$(a \mathbb{N}+b)$-analogue

Example

$$
\begin{aligned}
\left(\frac{a}{a-x}\right)^{m} & =\left(1-\frac{x}{a}\right)^{-m} \\
& =1+\frac{m}{a} x+\frac{m(m-1)}{2 a^{2}} x^{2}+\frac{m(m-1)(m-2)}{6 a^{3}} x^{3} \\
& +\frac{m(m-1)(m-2)(m-3)}{24 a^{4}} x^{4}+\frac{m(m-1)(m-2)(m-3)(m-4)}{120 a^{5}} x^{5}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{P_{a N}+b, n}{n!a_{\mathrm{N}+b}} x^{n}
\end{aligned}
$$

Notice our numerators are polynomials in m and our denominators are $a^{n} n!=n!{ }_{a \mathbb{N}+b}$.

2T -analogue

Example
 $\cos ^{m}(\sqrt{x})=$

$2 \mathbb{T}$-analogue

Example

$$
\begin{aligned}
\cos ^{m}(\sqrt{x})= & 1-\frac{m}{2} x+\frac{m+3 m(m-1)}{24} x^{2} \\
& -\frac{15 m(m-1)+m+15 m(m-1)(m-2)}{720} x^{3}+\cdots
\end{aligned}
$$

$2 \mathbb{T}$-analogue

Example

$$
\begin{aligned}
\cos ^{m}(\sqrt{x})= & 1-\frac{m}{2} x+\frac{m+3 m(m-1)}{24} x^{2} \\
& -\frac{15 m(m-1)+m+15 m(m-1)(m-2)}{720} x^{3}+\cdots \\
= & \sum_{n=0}^{\infty} \frac{P_{2 \mathbb{T}, n}(m)}{n!_{2 \mathbb{T}}} x^{n}
\end{aligned}
$$

2T -analogue

Example

$$
\begin{aligned}
\cos ^{m}(\sqrt{x})= & 1-\frac{m}{2} x+\frac{m+3 m(m-1)}{24} x^{2} \\
& -\frac{15 m(m-1)+m+15 m(m-1)(m-2)}{720} x^{3}+\cdots \\
= & \sum_{n=0}^{\infty} \frac{P_{2 \mathbb{T}, n}(m)}{n!_{2 \mathbb{T}}} x^{n}
\end{aligned}
$$

Note that by allowing multiplication by scalars, the \mathbb{Z}^{2}-analogue is

$$
2 \cos ^{m}(\sqrt{x})=\sum_{n=0}^{\infty} \frac{P_{\mathbb{Z}^{2}, n}(m)}{n!_{\mathbb{Z}^{2}}} x^{n}
$$

\mathbb{P}-analogue

Example

$$
\left(-\frac{\ln (1-x)}{x}\right)^{m}=1+\frac{m}{2} x+\frac{m(3 m+5)}{24} x^{2}+\frac{m\left(m^{2}+5 m+6\right)}{48} x^{3}+\cdots
$$

\mathbb{P}-analogue

Example

$$
\left(-\frac{\ln (1-x)}{x}\right)^{m}=1+\frac{m}{2} x+\frac{m(3 m+5)}{24} x^{2}+\frac{m\left(m^{2}+5 m+6\right)}{48} x^{3}+\cdots
$$

- Notice that the coefficients in the denominator seem to be the same as the factorials for the set of primes.

\mathbb{P}-analogue

Example

$$
\begin{aligned}
\left(-\frac{\ln (1-x)}{x}\right)^{m} & =1+\frac{m}{2} x+\frac{m(3 m+5)}{24} x^{2}+\frac{m\left(m^{2}+5 m+6\right)}{48} x^{3}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{P_{\mathbb{P}, n}(m)}{n!\mathbb{P}_{\mathbb{P}}} x^{n}
\end{aligned}
$$

- Notice that the coefficients in the denominator seem to be the same as the factorials for the set of primes.
- It turns out that this is so (Chabert, 2005).

Summary of !s-analogues

$$
\begin{aligned}
& \mathbb{N} \quad u \rightarrow \\
& n!_{\mathbb{N}}=n! \\
& n!{ }_{a \mathbb{N}+b}=a^{n} n! \\
& \leftrightarrow \\
& 2 \mathbb{T} \quad n \rightarrow \quad n!_{2 \mathbb{T}}=(2 n)! \\
& \mathbb{Z}^{2} \quad \leadsto \quad n!_{\mathbb{Z}^{2}}=\frac{(2 n)!}{2} \\
& a q^{\mathbb{N}} \quad \leadsto n!_{a q^{\mathbb{N}}}=(-a q)^{n} q^{\frac{-n(n+1)}{2}}(q: q)_{n} \quad \rightsquigarrow \\
& \mathbb{P} \quad n!\quad n \not \mathbb{P}=\prod_{p} p^{(\text {stuff })} \\
& \longleftrightarrow \\
& a \mathbb{N}+b \text { un } \\
& \text { tus } \\
& \longleftrightarrow
\end{aligned}
$$

Summary of !s-analogues

$$
\begin{aligned}
& \mathbb{N} \quad \text { ans } n!_{\mathbb{N}}=n!\quad \text { ! } \quad\left(e^{x}\right)^{m} \\
& a \mathbb{N}+b \text { un } \\
& n!{ }_{a \mathbb{N}+b}=a^{n} n! \\
& \leadsto \\
& 2 \mathbb{T} \text { सи } n!_{2 \mathbb{T}}=(2 n)!\text { tus } \\
& \mathbb{Z}^{2} \quad \leadsto \rightarrow \quad n!_{\mathbb{Z}^{2}}=\frac{(2 n)!}{2} \\
& a q^{\mathbb{N}} \quad \leadsto n!_{a q^{\mathbb{N}}}=(-a q)^{n} q^{\frac{-n(n+1)}{2}}(q: q)_{n} \quad \rightsquigarrow \\
& \mathbb{P} \quad \text { ans } \quad n!\mathbb{P}=\prod_{p} p^{(\text {stuff })} \quad \text { ans }
\end{aligned}
$$

Summary of !s-analogues

$$
\begin{aligned}
& \mathbb{N} \quad n!\quad n!_{\mathbb{N}}=n!\quad \leftrightarrow \quad\left(e^{x}\right)^{m} \\
& a \mathbb{N}+b \text { un } \\
& n!{ }_{a \mathbb{N}+b}=a^{n} n! \\
& \leftrightarrow\left(\frac{a}{a-x}\right)^{m} \\
& 2 T \longrightarrow \\
& n!{ }_{2 \mathbb{T}}=(2 n)! \\
& n!_{\mathbb{Z}^{2}}=\frac{(2 n)!}{2} \\
& a q^{\mathbb{N}} \quad \leadsto n!_{a q^{\mathbb{N}}}=(-a q)^{n} q^{\frac{-n(n+1)}{2}}(q: q)_{n} \quad \rightsquigarrow \\
& \mathbb{P} \quad \text {) } n!\mathbb{P}=\prod_{p} p^{(\text {stuff })}
\end{aligned}
$$

Summary of !s-analogues

$$
\begin{aligned}
& \mathbb{N} \quad n \nmid n!_{\mathbb{N}}=n!\quad \leftrightarrow \quad\left(e^{x}\right)^{m} \\
& a \mathbb{N}+b \text { un } \\
& n!{ }_{a \mathbb{N}+b}=a^{n} n! \\
& \leftrightarrow\left(\frac{a}{a-x}\right)^{m} \\
& \text { 2T } \quad \leftrightarrow \\
& n!_{2 \mathbb{T}}=(2 n)! \\
& \text { thas } \\
& \cos ^{m}(\sqrt{x}) \\
& \mathbb{Z}^{2} \quad \leftrightarrow< \\
& n!\mathbb{Z}^{2}=\frac{(2 n)!}{2} \\
& \text { tus } \\
& a q^{\mathbb{N}} \quad \leadsto n!_{a q^{\mathbb{N}}}=(-a q)^{n} q^{\frac{-n(n+1)}{2}}(q: q)_{n} \quad \rightsquigarrow \\
& \mathbb{P} \quad \text { anc } \quad n!\mathbb{P}=\prod_{p} p^{(\text {stuff })}
\end{aligned}
$$

Summary of !s-analogues

$$
\begin{aligned}
& \mathbb{N} \quad \rightarrow \\
& n!{ }_{\mathbb{N}}=n! \\
& \leftrightarrow \\
& \left(e^{x}\right)^{m} \\
& a \mathbb{N}+b \\
& n!_{a \mathbb{N}+b}=a^{n} n! \\
& \leftrightarrow\left(\frac{a}{a-x}\right)^{m} \\
& \begin{array}{llll}
2 \mathbb{T}
\end{array} \quad \begin{array}{l}
n!_{2 \mathbb{T}}=(2 n)! \\
\mathbb{Z}^{2}
\end{array} \quad \text { «н } \quad \cos ^{m}(\sqrt{x}) \\
& a q^{\mathbb{N}} \quad \leadsto n!_{a q^{\mathbb{N}}}=(-a q)^{n} q^{\frac{-n(n+1)}{2}}(q: q)_{n} \quad \rightsquigarrow \\
& \mathbb{P} \quad \leftrightarrow \leftrightarrow \quad n!\mathbb{P}=\prod_{p} p^{(\text {stuff })}
\end{aligned}
$$

Summary of !s-analogues

$$
\begin{array}{cccc}
\mathbb{N} & n!_{\mathbb{N}}=n! & n & \left(e^{x}\right)^{m} \\
a \mathbb{N}+b & n a_{\mathbb{N}+b}=a^{n} n! & n & \left(\frac{a}{a-x}\right)^{m} \\
2 \mathbb{T} & n!_{2 \mathbb{T}}=(2 n)! & \text { un } & \cos ^{m}(\sqrt{x}) \\
\mathbb{Z}^{2} & n!_{\mathbb{Z}^{2}}=\frac{(2 n)!}{2} & \text { anc } & 2 \cos ^{m}(\sqrt{x}) \\
a q^{\mathbb{N}} & n!_{a q^{\mathbb{N}}}=(-a q)^{n} q^{-\frac{n(n+1)}{2}(q: q)_{n}} & \\
\mathbb{P} & n!\mathbb{P}=\prod_{p} p^{(s t u f f)} & \\
\text { anc } & \left(-\frac{\ln (1-x)}{x}\right)^{m}
\end{array}
$$

Summary of !s-analogues

$$
\begin{array}{cccc}
\mathbb{N} & n!_{\mathbb{N}}=n! & & \left(e^{x}\right)^{m} \\
a \mathbb{N}+b & n a_{\mathbb{N}+b}=a^{n} n! & & \left(\frac{a}{a-x}\right)^{m} \\
2 \mathbb{T} & n!_{2 \mathbb{T}}=(2 n)! & \text { un } & \cos ^{m}(\sqrt{x}) \\
\mathbb{Z}^{2} & n!_{\mathbb{Z}^{2}}=\frac{(2 n)!}{2} & & 2 \cos ^{m}(\sqrt{x}) \\
a q^{\mathbb{N}} & n!_{a q^{\mathbb{N}}}=(-a q)^{n} q^{-\frac{-n(n+1)}{2}(q: q)_{n}} & & ? \\
\mathbb{P} & n!\mathbb{P}=\prod_{p} p^{(s t u f f)} & & \left(-\frac{\ln (1-x)}{x}\right)^{m}
\end{array}
$$

Summary of !s-analogues

$$
\begin{aligned}
& \mathbb{N} \\
& n!{ }_{N}=n! \\
& \text { th } \quad\left(e^{x}\right)^{m} \\
& a \mathbb{N}+b \\
& n!_{a \mathbb{N}+b}=a^{n} n! \\
& \text { (n) }\left(\frac{a}{a-x}\right)^{m} \\
& \begin{array}{llll}
2 \mathbb{T}
\end{array} \begin{array}{l}
n!_{2 \mathbb{T}}=(2 n)! \\
\mathbb{Z}^{2}
\end{array} \quad \text { ins } \quad \begin{array}{c}
\cos ^{m}(\sqrt{x}) \\
n!\mathbb{Z}^{2}
\end{array}=\frac{(2 n)!}{2} \quad \text { ins } \quad 2 \cos ^{m}(\sqrt{x}) \\
& a q^{\mathbb{N}} \quad \text { ans } n!_{a q^{\mathbb{N}}}=(-a q)^{n} q^{\frac{-n(n+1)}{2}}(q: q)_{n} \text { ins ? } \\
& \mathbb{P} \quad \text { an } \quad n!\mathbb{P}=\prod_{p} p^{(\text {stuff })} \quad \text { an } \quad\left(-\frac{\ln (1-x)}{x}\right)^{m} \\
& \left(\tan ^{-1}(x)\right)^{m}
\end{aligned}
$$

Summary of !s-analogues

$$
\begin{aligned}
& \mathbb{N} \quad \rightarrow \\
& n!_{\mathbb{N}}=n! \\
& \xrightarrow{t h} \quad\left(e^{x}\right)^{m} \\
& a \mathbb{N}+b \\
& n!_{a \mathbb{N}+b}=a^{n} n! \\
& \leftrightarrow\left(\frac{a}{a-x}\right)^{m} \\
& \begin{array}{llll}
2 \mathbb{T}
\end{array} \quad \begin{array}{l}
n!_{2 \mathbb{T}}=(2 n)! \\
\mathbb{Z}^{2}
\end{array} \quad \text { «ぃ } \quad \cos ^{m}(\sqrt{x}) \\
& a q^{\mathbb{N}} \quad \text { un } n!_{a q^{\mathbb{N}}}=(-a q)^{n} q^{\frac{-n(n+1)}{2}}(q: q)_{n} \quad \text { un } \quad \text { ? } \\
& \mathbb{P} \quad \text { ans } \quad n!\mathbb{P}=\prod_{p} p^{(\text {stuff })} \\
& \leftrightarrow\left(-\frac{\ln (1-x)}{x}\right)^{m} \\
& \text { ? } \\
& n!? \\
& \left.\leftrightarrow 4 \tan ^{-1}(x)\right)^{m}
\end{aligned}
$$

Future Work

Conjecture A

Conjecture B

Future Work

Conjecture A

Every subset of \mathbb{N} corresponds to a function.

Conjecture B

Every analytic function
corresponds to a subset of \mathbb{N}.

Future Work

Conjecture A

Every subset of \mathbb{N} corresponds to a function. Issues:

Conjecture B

Every analytic function
corresponds to a subset of \mathbb{N}.

Future Work

Conjecture A

Every subset of \mathbb{N} corresponds to a function. Issues:

- They probably won't be classical functions.

Conjecture B

Every analytic function
corresponds to a subset of \mathbb{N}.

Future Work

Conjecture A

Every subset of \mathbb{N} corresponds to a function. Issues:

- They probably won't be classical functions.
- Difficulty: Finding the correct polynomials in the numerator.

Conjecture B

Every analytic function
corresponds to a subset of \mathbb{N}.

Future Work

Conjecture A

Every subset of \mathbb{N} corresponds to a function. Issues:

- They probably won't be classical functions.
- Difficulty: Finding the correct polynomials in the numerator.
- Is it theoretically useful to allow for constants such as for \mathbb{Z}^{2} ?

Conjecture B

Every analytic function
corresponds to a subset of \mathbb{N}.

Future Work

Conjecture A

Every subset of \mathbb{N} corresponds to a function. Issues:

- They probably won't be classical functions.
- Difficulty: Finding the correct polynomials in the numerator.
- Is it theoretically useful to allow for constants such as for \mathbb{Z}^{2} ?

Conjecture B

Every analytic function
corresponds to a subset of \mathbb{N}.
Issues:

Future Work

Conjecture A

Every subset of \mathbb{N} corresponds to a function. Issues:

- They probably won't be classical functions.
- Difficulty: Finding the correct polynomials in the numerator.
- Is it theoretically useful to allow for constants such as for \mathbb{Z}^{2} ?

Conjecture B

Every analytic function (with conditions?) corresponds to a subset of \mathbb{N}.
Issues:

Future Work

Conjecture A

Every subset of \mathbb{N} corresponds to a function. Issues:

- They probably won't be classical functions.
- Difficulty: Finding the correct polynomials in the numerator.
- Is it theoretically useful to allow for constants such as for \mathbb{Z}^{2} ?

Conjecture B

Every analytic function (with conditions?) corresponds to a subset of \mathbb{N}. Issues:

- What are the conditions?

If The Conjectures Are True...

$$
\begin{aligned}
& -a \ln (a-x) \longrightarrow ? \\
& \left.\int d x\right|^{\uparrow} \\
& \frac{a}{a-x} \longleftrightarrow a \mathbb{N}+b \\
& \frac{{ }^{\frac{d}{d x}}}{} \\
& \frac{a}{(a-x)^{2}} \longrightarrow ?
\end{aligned}
$$

Thanks

- References

Bhargava, M. (2000). The factorial function and generalizations. The American Mathematical Monthly, 107(9), 783-799.

Chabert, J.L. (2007). Integer-valued polynomials on prime numbers and logarithm power expansion. European Journal of Combinatorics, 28(3), 754-761.

Thanks

- References

Bhargava, M. (2000). The factorial function and generalizations. The American Mathematical Monthly, 107(9), 783-799.

Chabert, J.L. (2007). Integer-valued polynomials on prime numbers and logarithm power expansion. European Journal of Combinatorics, 28(3), 754-761.

- Thanks Professor Eric Errthum!

Thanks

- References

Bhargava, M. (2000). The factorial function and generalizations. The American Mathematical Monthly, 107(9), 783-799.

Chabert, J.L. (2007). Integer-valued polynomials on prime numbers and logarithm power expansion. European Journal of Combinatorics, 28(3), 754-761.

- Thanks Professor Eric Errthum!
- Questions

