p-Egyptian Fractions

Tony Martino

Winona State University

April 6th, 2011

Definition and Examples

Definition (Egyptian Fraction)

An Egyptian Fraction is a sum of distinct positive unit fractions that is less than one.

Ex:

Definition and Examples

Definition (Egyptian Fraction)

An Egyptian Fraction is a sum of distinct positive unit fractions that is less than one.

Ex:

- $\frac{5}{6}=\frac{1}{2}+$

Definition and Examples

Definition (Egyptian Fraction)

An Egyptian Fraction is a sum of distinct positive unit fractions that is less than one.

Ex:

- $\frac{5}{6}=\frac{1}{2}+\frac{1}{3}$

Definition and Examples

Definition (Egyptian Fraction)

An Egyptian Fraction is a sum of distinct positive unit fractions that is less than one.

Ex:

- $\frac{5}{6}=\frac{1}{2}+\frac{1}{3}$
- $\frac{5}{121}=\frac{1}{25}$

Definition and Examples

Definition (Egyptian Fraction)

An Egyptian Fraction is a sum of distinct positive unit fractions that is less than one.

Ex:

- $\frac{5}{6}=\frac{1}{2}+\frac{1}{3}$
- $\frac{5}{121}=\frac{1}{25}+\frac{1}{757}$

Definition and Examples

Definition (Egyptian Fraction)

An Egyptian Fraction is a sum of distinct positive unit fractions that is less than one.

Ex:

- $\frac{5}{6}=\frac{1}{2}+\frac{1}{3}$
- $\frac{5}{121}=\frac{1}{25}+\frac{1}{757}+\frac{1}{763309}$

Definition and Examples

Definition (Egyptian Fraction)

An Egyptian Fraction is a sum of distinct positive unit fractions that is less than one.

Ex:

- $\frac{5}{6}=\frac{1}{2}+\frac{1}{3}$
- $\frac{5}{121}=\frac{1}{25}+\frac{1}{757}+\frac{1}{763309}+\frac{1}{873960180912}$

Definition and Examples

Definition (Egyptian Fraction)

An Egyptian Fraction is a sum of distinct positive unit fractions that is less than one.

Ex:

- $\frac{5}{6}=\frac{1}{2}+\frac{1}{3}$
- $\frac{5}{121}=\frac{1}{25}+\frac{1}{757}+\frac{1}{763309}+\frac{1}{873960180912}+\frac{1}{1527612795642093418846225}$

Definition and Examples

Definition (Egyptian Fraction)

An Egyptian Fraction is a sum of distinct positive unit fractions that is less than one.

Ex:

- $\frac{5}{6}=\frac{1}{2}+\frac{1}{3}$
- $\frac{5}{121}=\frac{1}{25}+\frac{1}{757}+\frac{1}{763309}+\frac{1}{873960180912}+\frac{1}{1527612795642093418846225}$
- $\frac{5}{121}=\frac{1}{45}+\frac{1}{75}+\frac{1}{300}+\frac{1}{1023}+\frac{1}{1089}+\frac{1}{1860}$

Definition and Examples

Definition (Egyptian Fraction)

An Egyptian Fraction is a sum of distinct positive unit fractions that is less than one.

Ex:

- $\frac{5}{6}=\frac{1}{2}+\frac{1}{3}$
- $\frac{5}{121}=\frac{1}{25}+\frac{1}{757}+\frac{1}{763309}+\frac{1}{873960180912}+\frac{1}{1527612795642093418846225}$
- $\frac{5}{121}=\frac{1}{45}+\frac{1}{75}+\frac{1}{300}+\frac{1}{1023}+\frac{1}{1089}+\frac{1}{1860}$
- $\frac{5}{121}=\frac{1}{33}+\frac{1}{121}+\frac{1}{363}$

Basic Facts

Fact (Not Unique)

There is more than one way to expand a rational number into an Egyptian fraction.

Basic Facts

Fact (Not Unique)

There is more than one way to expand a rational number into an Egyptian fraction.

Fact (Existence)

For all positive rational numbers less than one there exists an Egyptian fraction expansion.

Classical Egyptian Fractions

Finding an Egyptian fraction

Greedy Method

Example

Classical Egyptian Fractions

Greedy Method

Example

Find the largest unit fraction less than 4/13.

Greedy Method

Example

Find the largest unit fraction less than 4/13.

$$
\frac{4}{13}-\frac{1}{q}=\frac{r}{13 q}
$$

Greedy Method

Example

Find the largest unit fraction less than 4/13.

$$
\begin{aligned}
\frac{4}{13}-\frac{1}{q} & =\frac{r}{13 q} \\
\frac{4 q-13}{13 q} & =\frac{r}{13 q}
\end{aligned}
$$

Greedy Method

Example

Find the largest unit fraction less than 4/13.

$$
\begin{aligned}
\frac{4}{13}-\frac{1}{q} & =\frac{r}{13 q} \\
\frac{4 q-13}{13 q} & =\frac{r}{13 q} \\
4 q-13 & =r
\end{aligned}
$$

Greedy Method

Example

Find the largest unit fraction less than 4/13.

$$
\begin{aligned}
\frac{4}{13}-\frac{1}{q} & =\frac{r}{13 q} \\
\frac{4 q-13}{13 q} & =\frac{r}{13 q} \\
4 q-13 & =r
\end{aligned}
$$

$$
13=4 q-r
$$

Greedy Method

The division algorithm gives the largest q^{\prime} such that r^{\prime} remains positive.

$$
13=4 q^{\prime}+r^{\prime} \quad q^{\prime}=3 \quad r^{\prime}=1
$$

r smaller than 4

Greedy Method

The division algorithm gives the largest q^{\prime} such that r^{\prime} remains positive.

$$
13=4 q^{\prime}+r^{\prime} \quad q^{\prime}=3 \quad r^{\prime}=1
$$

Increment q^{\prime} by 1 to get the smallest q such that r is positive.

$$
13=4 q-r \quad q=4 \quad r=3
$$

r smaller than 4

Greedy Method

The division algorithm gives the largest q^{\prime} such that r^{\prime} remains positive.

$$
13=4 q^{\prime}+r^{\prime} \quad q^{\prime}=3 \quad r^{\prime}=1
$$

Increment q^{\prime} by 1 to get the smallest q such that r is positive.

$$
13=4 q-r \quad q=4 \quad r=3
$$

r smaller than 4 Then $q=4$ is as small as it can be and produces the largest possible unit fraction $1 / 4$ that is less than $4 / 13$.

Finding an Egyptian fraction

Greedy Method

Example

$$
\frac{4}{13}=\frac{1}{4}+\frac{3}{52} \longleftarrow \text { Not all unit fractions! }
$$

Greedy Method

Example

$$
\frac{4}{13}=\frac{1}{4}+\frac{3}{52} \longleftarrow \text { Not all unit fractions! }
$$

$$
52=3(18)-1
$$

Greedy Method

Example

$$
\begin{aligned}
& \frac{4}{13}=\frac{1}{4}+\frac{3}{52} \longleftarrow \text { Not all unit fractions! } \\
& \frac{3}{52}=\frac{1}{18}+\frac{1}{468} \longleftarrow \text { Done! }
\end{aligned}
$$

$$
52=3(18)-1
$$

Greedy Method

Example

$$
\begin{gathered}
\frac{4}{13}=\frac{1}{4}+\frac{3}{52} \longleftarrow \text { Not all unit fractions! } \\
\frac{3}{52}=\frac{1}{18}+\frac{1}{468} \longleftarrow \text { Done! } \\
\qquad \frac{4}{13}=\frac{1}{4}+\frac{1}{18}+\frac{1}{468}
\end{gathered}
$$

Greedy Method

Choose a fraction $\frac{a}{b}<1$

$$
\frac{a}{b}-\frac{1}{q_{1}}=\frac{r_{1}}{b q_{1}}
$$

Greedy Method

Choose a fraction $\frac{a}{b}<1$

$$
\frac{a}{b}-\frac{1}{q_{1}}=\frac{r_{1}}{b q_{1}}
$$

$$
b=a q_{1}-r_{1}
$$

Greedy Method

Choose a fraction $\frac{a}{b}<1$

$$
\frac{a}{b}-\frac{1}{q_{1}}=\frac{r_{1}}{b q_{1}}
$$

Repeat on $\frac{r_{1}}{b q_{1}}$

$$
\frac{r_{1}}{b q_{1}}-\frac{1}{q_{2}}=\frac{r_{2}}{b q_{1} q_{2}}
$$

Greedy Method

Choose a fraction $\frac{a}{b}<1$

$$
\frac{a}{b}-\frac{1}{q_{1}}=\frac{r_{1}}{b q_{1}}
$$

Repeat on $\frac{r_{1}}{b q_{1}}$

$$
\frac{r_{1}}{b q_{1}}-\frac{1}{q_{2}}=\frac{r_{2}}{b q_{1} q_{2}}
$$

Greedy Method

Choose a fraction $\frac{a}{b}<1$

$$
\begin{aligned}
& \qquad \begin{aligned}
& \frac{a}{b}-\frac{1}{q_{1}}=\frac{r_{1}}{b q_{1}} \\
& \text { Repeat on } \frac{r_{1}}{b q_{1}}
\end{aligned} \\
& \frac{r_{1}}{b q_{1}}-\frac{1}{q_{2}}
\end{aligned}=\frac{r_{2}}{b q_{1} q_{2}} . ~ l
$$

Greedy Method

Choose a fraction $\frac{a}{b}<1$

$$
\begin{array}{rlrl}
\frac{a}{b}-\frac{1}{q_{1}} & =\frac{r_{1}}{b q_{1}} & =a q_{1}-r_{1} \\
b q_{1} & =r_{1} q_{2}-r_{2} \\
\text { Repeat on } \frac{r_{1}}{b q_{1}} & & \vdots q_{1} q_{2} & =r_{2} q_{3}-r_{3} \\
\vdots & \\
\frac{r_{1}}{b q_{1}}-\frac{1}{q_{2}} & =\frac{r_{2}}{b q_{1} q_{2}} & b q_{1} q_{2} \cdots q_{n-1} & =r_{n-1} q_{n}-0
\end{array}
$$

Greedy Method

Choose a fraction $\frac{a}{b}<1$

$$
\begin{aligned}
\frac{a}{b}-\frac{1}{q_{1}}= & \frac{r_{1}}{b q_{1}} \begin{aligned}
& b=a q_{1}-r_{1} \\
& b q_{1}=r_{1} q_{2}-r_{2} \\
& b q_{1} q_{2}=r_{2} q_{3}-r_{3} \\
& \text { Repeat on } \frac{r_{1}}{b q_{1}} \\
& \vdots \\
& \frac{r_{1}}{b q_{1}}-\frac{1}{q_{2}}=\frac{r_{2}}{b q_{1} q_{2}} \quad b q_{1} q_{2} \cdots q_{n-1}=r_{n-1} q_{n}-0 \\
& \frac{1}{q_{1}}+\frac{1}{q_{2}}+\cdots+\frac{1}{q_{n}}=\frac{a}{b}
\end{aligned}
\end{aligned}
$$

p-Adic Size

A number is small if it is very divisible by p.

p-Adic Size

A number is small if it is very divisible by p.

Definition (p-Adic Size)

Let n be the power of p in the factorization of $\frac{a}{b}$ and take $\left|\frac{a}{b}\right|_{p}$ to be p^{-n}.

p-Adic Size

A number is small if it is very divisible by p.

Definition (p -Adic Size)

Let n be the power of p in the factorization of $\frac{a}{b}$ and take $\left|\frac{a}{b}\right|_{p}$ to be p^{-n}.

$$
|294|_{7}=\left|7^{2} \cdot 3 \cdot 2\right|_{7}=\left|7^{2}\right|_{7}=\frac{1}{49} \text { SMALL }
$$

p-Adic Size

A number is small if it is very divisible by p.

Definition (p-Adic Size)

Let n be the power of p in the factorization of $\frac{a}{b}$ and take $\left|\frac{a}{b}\right|_{p}$ to be p^{-n}.

$$
\begin{gathered}
|294|_{7}=\left|7^{2} \cdot 3 \cdot 2\right|_{7}=\left|7^{2}\right|_{7}=\frac{1}{49} \text { SMALL } \\
\left|\frac{30}{189}\right|_{3}=\left|\frac{2 \cdot 3 \cdot 5}{7 \cdot 3^{3}}\right|_{3}=\left|\frac{3}{3^{3}}\right|_{3}=\left|\frac{1}{3^{2}}\right|_{3}=9 \text { LARGE }
\end{gathered}
$$

p-Adic Size

A number is small if it is very divisible by p.

Definition (p-Adic Size)

Let n be the power of p in the factorization of $\frac{a}{b}$ and take $\left|\frac{a}{b}\right|_{p}$ to be p^{-n}.

$$
\begin{gathered}
|294|_{7}=\left|7^{2} \cdot 3 \cdot 2\right|_{7}=\left|7^{2}\right|_{7}=\frac{1}{49} \mathrm{SMALL} \\
\left|\frac{30}{189}\right|_{3}=\left|\frac{2 \cdot 3 \cdot 5}{7 \cdot 3^{3}}\right|_{3}=\left|\frac{3}{3^{3}}\right|_{3}=\left|\frac{1}{3^{2}}\right|_{3}=9 \text { LARGE } \\
\left|\frac{a}{b}\right|_{p} a \text { and } b \text { contain the same power of } p,\left|\frac{a}{b}\right|_{p}=1 \mathrm{SAME}
\end{gathered}
$$

p-Adic Division Algorithm

Definition (Errthum, Lager, 2009)

Let p be an odd prime. Then given any b and $a \in \mathbb{Q}_{p}$ where $a \neq 0$, there exists uniquely $q^{\prime}=\frac{m}{p^{k}}$ with $\left|q^{\prime}\right|<p$, and $r^{\prime} \in \mathbb{Q}_{p}$ with $\left|r^{\prime}\right|_{p}<|a|_{p}$ such that $b=a q^{\prime}+r^{\prime}$.

p-Adic Division Algorithm

Definition (Errthum, Lager, 2009)

Let p be an odd prime. Then given any b and $a \in \mathbb{Q}_{p}$ where $a \neq 0$, there exists uniquely $q^{\prime}=\frac{m}{p^{k}}$ with $\left|q^{\prime}\right|<p$, and $r^{\prime} \in \mathbb{Q}_{p}$ with $\left|r^{\prime}\right|_{p}<|a|_{p}$ such that $b=a q^{\prime}+r^{\prime}$.
$\frac{5}{6}$ divided by $-\frac{2}{3}$ is 4 with a remainder of $\frac{7}{2}$ in the 7 -adics.

$$
\frac{5}{6}=\left(-\frac{2}{3}\right) 4+\frac{7}{2}
$$

p-Adic Division Algorithm

Definition (Errthum, Lager, 2009)

Let p be an odd prime. Then given any b and $a \in \mathbb{Q}_{p}$ where $a \neq 0$, there exists uniquely $q^{\prime}=\frac{m}{p^{k}}$ with $\left|q^{\prime}\right|<p$, and $r^{\prime} \in \mathbb{Q}_{p}$ with $\left|r^{\prime}\right|_{p}<|a|_{p}$ such that $b=a q^{\prime}+r^{\prime}$.
$\frac{5}{6}$ divided by $-\frac{2}{3}$ is 4 with a remainder of $\frac{7}{2}$ in the 7 -adics.
20 divided by 5 is 4 with a remainder of 0 in the 7 -adics.

$$
\frac{5}{6}=\left(-\frac{2}{3}\right) 4+\frac{7}{2} \quad 20=5 \cdot 4+0
$$

p-Adic Division Algorithm

Definition (Errthum, Lager, 2009)

Let p be an odd prime. Then given any b and $a \in \mathbb{Q}_{p}$ where $a \neq 0$, there exists uniquely $q^{\prime}=\frac{m}{p^{k}}$ with $\left|q^{\prime}\right|<p$, and $r^{\prime} \in \mathbb{Q}_{p}$ with $\left|r^{\prime}\right|_{p}<|a|_{p}$ such that $b=a q^{\prime}+r^{\prime}$.
$\frac{5}{6}$ divided by $-\frac{2}{3}$ is 4 with a remainder of $\frac{7}{2}$ in the 7 -adics.
20 divided by 5 is 4 with a remainder of 0 in the 7 -adics. 20 divided by 5 is 1 with a remainder of 15 in the 3 -adics.

$$
\frac{5}{6}=\left(-\frac{2}{3}\right) 4+\frac{7}{2} \quad 20=5 \cdot 4+0 \quad 20=5 \cdot 1+15
$$

p-Adic Greedy Algorithm

Classical
p-Adic
Choose $\left|\frac{a}{b}\right| \leq 1$.

Choose $\left|\frac{a}{b}\right|_{p} \leq 1$.

p-Adic Greedy Algorithm

Classical
Choose $\left|\frac{a}{b}\right| \leq 1$.
Division algorithm
$b, a \in \mathbb{Z} \longrightarrow q^{\prime}, r^{\prime} \in \mathbb{Z}$ with $0 \leq r^{\prime}<|a|$ and $b=a q^{\prime}+r^{\prime}$
p-Adic
Choose $\left|\frac{a}{b}\right|_{p} \leq 1$.
Division algorithm
$b, a \in \mathbb{Q} \longrightarrow q^{\prime}=\frac{m}{p^{k}}, r^{\prime} \in \mathbb{Q}$ with
$0 \leq\left|r^{\prime}\right|_{p}<|a|_{p}$ and $b=a q^{\prime}+r^{\prime}$

p-Adic Greedy Algorithm

Classical
Choose $\left|\frac{a}{b}\right| \leq 1$.
Division algorithm

$$
\begin{gathered}
b, a \in \mathbb{Z} \longrightarrow q^{\prime}, r^{\prime} \in \mathbb{Z} \text { with } \\
0 \leq r^{\prime}<|a| \text { and } b=a q^{\prime}+r^{\prime}
\end{gathered}
$$

p-Adic
Choose $\left|\frac{a}{b}\right|_{p} \leq 1$.
Division algorithm $b, a \in \mathbb{Q} \longrightarrow q^{\prime}=\frac{m}{p^{k}}, r^{\prime} \in \mathbb{Q}$ with $0 \leq\left|r^{\prime}\right|_{p}<|a|_{p}$ and $b=a q^{\prime}+r^{\prime}$

Take $q=q^{\prime}+1$ so that $b=a q-r$.

p-Adic Greedy Algorithm

Classical
Choose $\left|\frac{a}{b}\right| \leq 1$.
p-Adic

Division algorithm

$$
\begin{gathered}
b, a \in \mathbb{Z} \longrightarrow q^{\prime}, r^{\prime} \in \mathbb{Z} \text { with } \\
0 \leq r^{\prime}<|a| \text { and } b=a q^{\prime}+r^{\prime}
\end{gathered}
$$

Take $q=q^{\prime}+1$ so that $b=a q-r$.

Choose $\left|\frac{a}{b}\right|_{p} \leq 1$.
Division algorithm $b, a \in \mathbb{Q} \longrightarrow q^{\prime}=\frac{m}{p^{k}}, r^{\prime} \in \mathbb{Q}$ with $0 \leq\left|r^{\prime}\right|_{p}<|a|_{p}$ and $b=a q^{\prime}+r^{\prime}$

Take $q=q^{\prime}+$? so that $b=a q-r$.

What is?

In the classical case,

$$
q=q^{\prime}+1
$$

What is?

In the classical case,

$$
q=q^{\prime}+1
$$

In the p-adic case,

$$
q=q^{\prime}+\left\lceil\frac{\frac{b}{a}-q^{\prime}}{p}\right\rceil p
$$

What is?

In the classical case,

$$
q=q^{\prime}+1
$$

In the p-adic case,

$$
q=q^{\prime}+\left\lceil\frac{\frac{b}{a}-q^{\prime}}{p}\right\rceil p
$$

Choose $p=1$ and pretend it's the classical case,

$$
q=q^{\prime}+\overbrace{\left\lceil\frac{\frac{b}{a}-\left\lfloor\frac{b}{a}\right\rfloor}{1}\right\rceil}^{\text {Just equal to } 1}
$$

p-Adic Greedy Algorithm

p-Adic
Classical
Choose $\left|\frac{a}{b}\right| \leq 1$.
Division algorithm $b, a \in \mathbb{Z} \longrightarrow q^{\prime}, r^{\prime} \in \mathbb{Z}$ with $0 \leq r^{\prime}<|a|$ and $b=a q^{\prime}+r^{\prime}$

Take $q=q^{\prime}+1$ so that $b=a q-r$.

Choose $\left|\frac{a}{b}\right|_{p} \leq 1$.
Division algorithm
$b, a \in \mathbb{Q} \longrightarrow q^{\prime}=\frac{m}{p^{k}}, r^{\prime} \in \mathbb{Q}$ with
$0 \leq\left|r^{\prime}\right|_{p}<|a|_{p}$ and $b=a q^{\prime}+r^{\prime}$

Take $q=q^{\prime}+$?
so that

$$
b=a q-r .
$$

p-Adic Greedy Algorithm

p-Adic
Classical
Choose $\left|\frac{a}{b}\right| \leq 1$.
Division algorithm $b, a \in \mathbb{Z} \longrightarrow q^{\prime}, r^{\prime} \in \mathbb{Z}$ with $0 \leq r^{\prime}<|a|$ and $b=a q^{\prime}+r^{\prime}$

Take $q=q^{\prime}+1$ so that $b=a q-r$.

Choose $\left|\frac{a}{b}\right|_{p} \leq 1$.
Division algorithm
$b, a \in \mathbb{Q} \longrightarrow q^{\prime}=\frac{m}{p^{k}}, r^{\prime} \in \mathbb{Q}$ with
$0 \leq\left|r^{\prime}\right|_{p}<|a|_{p}$ and $b=a q^{\prime}+r^{\prime}$
Take $q=q^{\prime}+\left\lceil\frac{\frac{b}{a}-q^{\prime}}{p}\right\rceil p$ so that $b=a q-r$.

Different kind of Egyptian...

p-Adic Egyptian Fraction

Instead of fractions of the form,

$$
\frac{1}{d_{1}}+\frac{1}{d_{2}}+\cdots+\frac{1}{d_{n}}
$$

with distinct terms, allow for increasing whole powers of a prime p to appear in the numerator,

$$
\frac{p^{\varepsilon_{1}}}{d_{1}}+\frac{p^{\varepsilon_{2}}}{d_{2}}+\frac{p^{\varepsilon_{3}}}{d_{3}}+\cdots+\frac{p^{\varepsilon_{n}}}{d_{n}}
$$

with $0 \leq \varepsilon_{n}<\varepsilon_{n+1}$.

Numerical Example

Find the p-Egyptian fraction expansion of $\frac{2}{9}$ in \mathbb{Q}_{5}.

Numerical Example

Find the p-Egyptian fraction expansion of $\frac{2}{9}$ in \mathbb{Q}_{5}.

$$
b=a q^{\prime}+r^{\prime} \quad q=q^{\prime}+\left\lceil\frac{\frac{b}{a}-q^{\prime}}{p}\right\rceil p \quad b=a q-r
$$

Numerical Example

Find the p-Egyptian fraction expansion of $\frac{2}{9}$ in \mathbb{Q}_{5}.

$$
\begin{aligned}
& b=a q^{\prime}+r^{\prime} \quad q=q^{\prime}+\left\lceil\frac{\frac{b}{\frac{b}{2}-q^{\prime}}}{p}\right\rceil p \quad b=a q-r \\
& 9=2 \cdot 2+5
\end{aligned}
$$

Numerical Example

Find the p-Egyptian fraction expansion of $\frac{2}{9}$ in \mathbb{Q}_{5}.

$$
\begin{array}{lll}
b=a q^{\prime}+r^{\prime} & q=q^{\prime}+\left\lceil\frac{\frac{b}{a}-q^{\prime}}{p}\right\rceil p & b=a q-r \\
9=2 \cdot 2+5 & q_{1}=2+\left\lceil\frac{\frac{9}{2}-2}{5}\right\rceil 5 &
\end{array}
$$

Numerical Example

Find the p-Egyptian fraction expansion of $\frac{2}{9}$ in \mathbb{Q}_{5}.

$$
\begin{array}{lll}
b=a q^{\prime}+r^{\prime} & q=q^{\prime}+\left\lceil\frac{\frac{b}{a}-q^{\prime}}{p}\right\rceil p & b=a q-r \\
9=2 \cdot 2+5 & q_{1} & =2+\left\lceil\frac{\frac{9}{2}-2}{5}\right\rceil 5 \\
& =2+\left\lceil\frac{1}{2}\right\rceil 5=7
\end{array}
$$

Numerical Example

Find the p-Egyptian fraction expansion of $\frac{2}{9}$ in \mathbb{Q}_{5}.

$$
\begin{array}{lll}
b=a q^{\prime}+r^{\prime} & q=q^{\prime}+\left\lceil\frac{\frac{b}{a}-q^{\prime}}{p}\right\rceil p & b=a q-r \\
9=2 \cdot 2+5 & q_{1} & =2+\left\lceil\frac{\frac{9}{2}-2}{5}\right\rceil 5 \\
& =2+\left\lceil\frac{1}{2}\right\rceil 5=7 & 9=2 \cdot 7-5
\end{array}
$$

Numerical Example

Find the p-Egyptian fraction expansion of $\frac{2}{9}$ in \mathbb{Q}_{5}.

$$
\begin{array}{rlr}
b=a q^{\prime}+r^{\prime} & q=q^{\prime}+\left\lceil\frac{\frac{b}{2}-q^{\prime}}{p}\right\rceil p & b=a q-r \\
9=2 \cdot 2+5 & q_{1}=2+\left\lceil\frac{\frac{9}{2}-2}{5}\right\rceil 5 & \\
& =2+\left\lceil\frac{1}{2}\right\rceil 5=7 & 9=2 \cdot 7-5
\end{array}
$$

Numerical Example

Find the p-Egyptian fraction expansion of $\frac{2}{9}$ in \mathbb{Q}_{5}.

$$
\begin{aligned}
& b=a q^{\prime}+r^{\prime} \\
& q=q^{\prime}+\left\lceil\frac{\frac{b}{\frac{b}{-}-q^{\prime}}}{p}\right\rceil p \\
& b=a q-r \\
& 9=2 \cdot 2+5 \\
& q_{1}=2+\left\lceil\frac{\frac{9}{2}-2}{5}\right\rceil 5 \\
& =2+\left\lceil\frac{1}{2}\right\rceil 5=7 \\
& 9=2 \cdot 7-5 \\
& 9 \cdot 7=5\left(\frac{13}{5}\right)+50 \quad q_{2}=\frac{13}{5}+\left\lceil\frac{\frac{63}{5}-\frac{13}{5}}{5}\right\rceil 5
\end{aligned}
$$

Numerical Example

Find the p-Egyptian fraction expansion of $\frac{2}{9}$ in \mathbb{Q}_{5}.

$$
\begin{array}{rlr}
b=a q^{\prime}+r^{\prime} & q=q^{\prime}+\left\lceil\frac{\frac{b}{2}-q^{\prime}}{p}\right\rceil p & b=a q-r \\
9=2 \cdot 2+5 & q_{1} & =2+\left\lceil\frac{\frac{9}{2}-2}{5}\right\rceil 5 \\
& =2+\left\lceil\frac{1}{2}\right\rceil 5=7 & 9=2 \cdot 7-5 \\
9 \cdot 7=5\left(\frac{13}{5}\right)+50 & q_{2} & =\frac{13}{5}+\left\lceil\frac{63}{5}-\frac{13}{5}\right\rceil 5 \\
& & =\frac{13}{5}+\lceil 2\rceil 5=\frac{63}{5}
\end{array}
$$

Numerical Example

Find the p-Egyptian fraction expansion of $\frac{2}{9}$ in \mathbb{Q}_{5}.

$$
\begin{array}{rlrl}
b=a q^{\prime}+r^{\prime} & q & =q^{\prime}+\left\lceil\frac{\frac{b}{2}-q^{\prime}}{p}\right\rceil p & b=a q-r \\
9=2 \cdot 2+5 & q_{1} & =2+\left\lceil\frac{\frac{9}{2}-2}{5}\right\rceil 5 & \\
& =2+\left\lceil\frac{1}{2}\right\rceil 5=7 & 9=2 \cdot 7-5 \\
9 \cdot 7=5\left(\frac{13}{5}\right)+50 & q_{2} & =\frac{13}{5}+\left\lceil\frac{63}{5}-\frac{13}{5}\right\rceil 5 & \\
& & =\frac{13}{5}+\lceil 2\rceil 5=\frac{63}{5} & 63=5\left(\frac{63}{5}\right)-0
\end{array}
$$

Numerical Example

Find the p-Egyptian fraction expansion of $\frac{2}{9}$ in \mathbb{Q}_{5}.

$$
\begin{array}{rlr}
b=a q^{\prime}+r^{\prime} & q=q^{\prime}+\left\lceil\frac{\frac{b}{2}-q^{\prime}}{p}\right\rceil p & b=a q-r \\
9=2 \cdot 2+5 & q_{1} & =2+\left\lceil\frac{9}{2}-2\right. \\
5 \\
& =2+\left\lceil\frac{1}{2}\right\rceil 5=7 & 9=2 \cdot 7-5 \\
9 \cdot 7=5\left(\frac{13}{5}\right)+50 & q_{2} & =\frac{13}{5}+\left\lceil\frac{\frac{63}{5}-\frac{13}{5}}{5}\right\rceil 5 \\
& =\frac{13}{5}+\lceil 2\rceil 5=\frac{63}{5} & 63=5\left(\frac{63}{5}\right)-0 \\
& \frac{1}{7}+\frac{5}{63}=\frac{2}{9} &
\end{array}
$$

Alternate Egyptian fraction expansion

$$
\frac{a}{b}=\frac{p^{\varepsilon_{1}}}{d_{1}}+\frac{p^{\varepsilon_{2}}}{d_{2}}+\cdots+\frac{p^{\varepsilon_{n}}}{d_{n}}
$$

Alternate Egyptian fraction expansion

$$
\begin{aligned}
\frac{a}{b} & =\frac{p^{\varepsilon_{1}}}{d_{1}}+\frac{p^{\varepsilon_{2}}}{d_{2}}+\cdots+\frac{p^{\varepsilon_{n}}}{d_{n}} \\
\frac{a}{b \cdot p^{\varepsilon_{n}}} & =\frac{1}{d_{1} \cdot p^{\varepsilon_{n}-\varepsilon_{1}}}+\frac{1}{d_{2} \cdot p^{\varepsilon_{n}-\varepsilon_{2}}}+\cdots+\frac{1}{d_{n}}
\end{aligned}
$$

Alternate Egyptian fraction expansion

$$
\begin{aligned}
\frac{a}{b} & =\frac{p^{\varepsilon_{1}}}{d_{1}}+\frac{p^{\varepsilon_{2}}}{d_{2}}+\cdots+\frac{p^{\varepsilon_{n}}}{d_{n}} \\
\frac{a}{b \cdot p^{\varepsilon_{n}}} & =\frac{1}{d_{1} \cdot p^{\varepsilon_{n}-\varepsilon_{1}}}+\frac{1}{d_{2} \cdot p^{\varepsilon_{n}-\varepsilon_{2}}}+\cdots+\frac{1}{d_{n}}
\end{aligned}
$$

How do we make $\frac{a}{b \cdot p^{\varepsilon n}}$ the input?

Acknowledgements

- Professor Errthum
- Winona State University, Foundation

