Classical Egyptian Fractions

p-Egyptian Fractions

Tony Martino

Winona State University

April 6th, 2011

Definition and Examples

Definition (Egyptian Fraction)

An **Egyptian Fraction** is a sum of distinct positive unit fractions that is less than one.

An **Egyptian Fraction** is a sum of distinct positive unit fractions that is less than one.

Ex:

•00000

•
$$\frac{5}{6} = \frac{1}{2} +$$

An **Egyptian Fraction** is a sum of distinct positive unit fractions that is less than one.

Ex:

•00000

$$\frac{5}{6} = \frac{1}{2} + \frac{1}{3}$$

An **Egyptian Fraction** is a sum of distinct positive unit fractions that is less than one.

- $\frac{5}{6} = \frac{1}{2} + \frac{1}{3}$
- $\frac{5}{121} = \frac{1}{25}$

An **Egyptian Fraction** is a sum of distinct positive unit fractions that is less than one.

$$\frac{5}{6} = \frac{1}{2} + \frac{1}{3}$$

$$\bullet \ \ \tfrac{5}{121} = \tfrac{1}{25} + \tfrac{1}{757}$$

An **Egyptian Fraction** is a sum of distinct positive unit fractions that is less than one.

$$\frac{5}{6} = \frac{1}{2} + \frac{1}{3}$$

$$\bullet \ \ \frac{5}{121} = \frac{1}{25} + \frac{1}{757} + \frac{1}{763309}$$

An **Egyptian Fraction** is a sum of distinct positive unit fractions that is less than one.

$$\frac{5}{6} = \frac{1}{2} + \frac{1}{3}$$

$$\bullet \ \ \frac{5}{121} = \frac{1}{25} + \frac{1}{757} + \frac{1}{763309} + \frac{1}{873960180912}$$

p-Adic

Definition (Egyptian Fraction)

An **Egyptian Fraction** is a sum of distinct positive unit fractions that is less than one.

$$\frac{5}{6} = \frac{1}{2} + \frac{1}{3}$$

$$\bullet \ \ \frac{5}{121} = \frac{1}{25} + \frac{1}{757} + \frac{1}{763309} + \frac{1}{873960180912} + \frac{1}{1527612795642093418846225}$$

p-Adic

Definition (Egyptian Fraction)

An **Egyptian Fraction** is a sum of distinct positive unit fractions that is less than one.

$$\frac{5}{6} = \frac{1}{2} + \frac{1}{3}$$

$$\bullet \ \ \frac{5}{121} = \frac{1}{25} + \frac{1}{757} + \frac{1}{763309} + \frac{1}{873960180912} + \frac{1}{1527612795642093418846225}$$

•
$$\frac{5}{121} = \frac{1}{45} + \frac{1}{75} + \frac{1}{300} + \frac{1}{1023} + \frac{1}{1089} + \frac{1}{1860}$$

p-Adic

Definition (Egyptian Fraction)

An **Egyptian Fraction** is a sum of distinct positive unit fractions that is less than one.

•
$$\frac{5}{6} = \frac{1}{2} + \frac{1}{3}$$

$$\bullet \ \ \frac{5}{121} = \frac{1}{25} + \frac{1}{757} + \frac{1}{763309} + \frac{1}{873960180912} + \frac{1}{1527612795642093418846225}$$

$$\bullet \ \frac{5}{121} = \frac{1}{45} + \frac{1}{75} + \frac{1}{300} + \frac{1}{1023} + \frac{1}{1089} + \frac{1}{1860}$$

$$\bullet \ \ \frac{5}{121} = \frac{1}{33} + \frac{1}{121} + \frac{1}{363}$$

Basic Facts

000000

Fact (Not Unique)

There is more than one way to expand a rational number into an Egyptian fraction.

Basic Facts

Fact (Not Unique)

There is more than one way to expand a rational number into an Egyptian fraction.

Fact (Existence)

For all positive rational numbers less than one there exists an Egyptian fraction expansion.

Finding an Egyptian fraction

000000

Greedy Method

```
Example
```

Example

Example

$$\frac{4}{13} - \frac{1}{q} = \frac{r}{13q}$$

Example

$$\frac{4}{13} - \frac{1}{q} = \frac{r}{13q}$$
$$\frac{4q - 13}{13q} = \frac{r}{13q}$$

Example

$$\frac{4}{13} - \frac{1}{q} = \frac{r}{13q}$$
$$\frac{4q - 13}{13q} = \frac{r}{13q}$$
$$4q - 13 = r$$

Example

$$\frac{4}{13} - \frac{1}{q} = \frac{r}{13q}$$

$$\frac{4q - 13}{13q} = \frac{r}{13q}$$

$$4q - 13 = r$$

$$13 = 4q - r$$

The **division algorithm** gives the largest q' such that r' remains positive.

$$13 = 4q' + r'$$

$$q' = 3$$
 $r' = 1$

$$r'=1$$

r smaller than 4

The **division algorithm** gives the largest q' such that r' remains positive.

$$13 = 4q' + r'$$
 $q' = 3$ $r' = 1$

$$q'=3$$
 r

Increment q' by 1 to get the smallest q such that r is positive.

$$13 = 4q - r$$

$$q = 4$$
 $r = 3$

r smaller than 4

The **division algorithm** gives the largest q' such that r' remains positive.

$$13 = 4q' + r'$$
 $q' = 3$ $r' = 1$

Increment q' by 1 to get the smallest q such that r is positive.

$$13 = 4q - r \qquad q = 4 \qquad r = 3$$

r smaller than 4 Then q=4 is as small as it can be and produces the largest possible unit fraction 1/4 that is less than 4/13.

$$\frac{4}{13} = \frac{1}{4} + \frac{3}{52} \longleftarrow \text{Not all unit fractions!}$$

$$\frac{4}{13} = \frac{1}{4} + \frac{3}{52}$$
 — Not all unit fractions!

$$52 = 3(18) - 1$$

$$\frac{4}{13} = \frac{1}{4} + \frac{3}{52} \longleftarrow \text{Not all unit fractions!}$$

$$\frac{3}{52} = \frac{1}{18} + \frac{1}{468} \longleftarrow \text{Done!}$$

$$52 = 3(18) - 1$$

$$\frac{4}{13} = \frac{1}{4} + \frac{3}{52} \longleftarrow \text{Not all unit fractions!}$$

$$\frac{3}{52} = \frac{1}{18} + \frac{1}{468} \longleftarrow \text{Done!}$$

$$\frac{3}{52} = \frac{1}{18} + \frac{1}{468} \leftarrow \text{Done!}$$

$$\frac{4}{13} = \frac{1}{4} + \frac{1}{18} + \frac{1}{468}$$

$$52 = 3(18) - 1$$

Finding an Egyptian fraction

00000

Greedy Method

Choose a fraction $\frac{a}{b} < 1$

$$\frac{a}{b} - \frac{1}{q_1} = \frac{r_1}{bq_2}$$

Finding an Egyptian fraction

Greedy Method

Choose a fraction $\frac{a}{b} < 1$

$$\frac{a}{b} - \frac{1}{q_1} = \frac{r_1}{bq_1}$$

$$b=aq_1-r_1$$

Choose a fraction $\frac{a}{b} < 1$

$$\frac{a}{b} - \frac{1}{q_1} = \frac{r_1}{bq_1}$$

Repeat on $\frac{r_1}{bq_1}$

$$\frac{r_1}{bq_1} - \frac{1}{q_2} = \frac{r_2}{bq_1q_2}$$

$$b = aq_1 - r_1$$

Choose a fraction $\frac{a}{b} < 1$

$$\frac{a}{b} - \frac{1}{q_1} = \frac{r_1}{bq_1}$$

Repeat on $\frac{r_1}{bq_1}$

$$\frac{r_1}{bq_1} - \frac{1}{q_2} = \frac{r_2}{bq_1q_2}$$

$$b = aq_1 - r_1$$
$$bq_1 = r_1q_2 - r_2$$

Choose a fraction $\frac{a}{b} < 1$

$$\frac{a}{b} - \frac{1}{q_1} = \frac{r_1}{bq_1}$$

Repeat on $\frac{r_1}{bq_1}$

$$\frac{r_1}{bq_1} - \frac{1}{q_2} = \frac{r_2}{bq_1q_2}$$

$$b = aq_1 - r_1$$

 $bq_1 = r_1q_2 - r_2$
 $bq_1q_2 = r_2q_3 - r_3$

00000

Choose a fraction $\frac{a}{b} < 1$

$$\frac{a}{b} - \frac{1}{q_1} = \frac{r_1}{bq_1}$$
Repeat on
$$\frac{r_1}{bq_1}$$

$$\frac{r_1}{hq_2} - \frac{1}{q_2} = \frac{r_2}{hq_1q_2}$$

$$b = aq_1 - r_1$$

$$bq_1 = r_1q_2 - r_2$$

$$bq_1q_2 = r_2q_3 - r_3$$

$$\vdots$$

$$bq_1q_2 \cdots q_{n-1} = r_{n-1}q_n - 0$$

Choose a fraction $\frac{a}{b} < 1$

$$\frac{a}{b} - \frac{1}{q_1} = \frac{r_1}{bq_1}$$

$$b = aq_1 - r_1$$

$$bq_1 = r_1q_2 - r_2$$

$$bq_1q_2 = r_2q_3 - r_3$$

$$\vdots$$

$$\frac{r_1}{bq_1} - \frac{1}{q_2} = \frac{r_2}{bq_1q_2}$$

$$bq_1q_2 = r_2q_3 - r_3$$

$$\vdots$$

$$bq_1q_2 \cdots q_{n-1} = r_{n-1}q_n - 0$$

$$\frac{1}{q_1} + \frac{1}{q_2} + \cdots + \frac{1}{q_n} = \frac{a}{b}$$

A number is small if it is very divisible by p.

p-Adic Size

A number is small if it is very divisible by p.

Definition (p-Adic Size)

Let *n* be the power of *p* in the factorization of $\frac{a}{b}$ and take $|\frac{a}{b}|_p$ to be p^{-n} .

p-Adic Size

A number is small if it is very divisible by p.

Definition (p-Adic Size)

Let n be the power of p in the factorization of $\frac{a}{b}$ and take $\left|\frac{a}{b}\right|_p$ to be p^{-n} .

$$|294|_7 = |7^2 \cdot 3 \cdot 2|_7 = |7^2|_7 = \frac{1}{49}$$
 SMALL

A number is small if it is very divisible by p.

Definition (p-Adic Size)

Let n be the power of p in the factorization of $\frac{a}{b}$ and take $\left|\frac{a}{b}\right|_p$ to be p^{-n} .

$$|294|_7 = |7^2 \cdot 3 \cdot 2|_7 = |7^2|_7 = \frac{1}{49}$$
 SMALL

$$|\frac{30}{189}|_3 = |\frac{2 \cdot 3 \cdot 5}{7 \cdot 3^3}|_3 = |\frac{3}{3^3}|_3 = |\frac{1}{3^2}|_3 = 9 \text{ LARGE}$$

p-Adic

p-Adic Size

A number is small if it is very divisible by p.

Definition (p-Adic Size)

Let n be the power of p in the factorization of $\frac{a}{b}$ and take $\left|\frac{a}{b}\right|_p$ to be p^{-n} .

$$|294|_7 = |7^2 \cdot 3 \cdot 2|_7 = |7^2|_7 = \frac{1}{49}$$
 SMALL

$$|\frac{30}{189}|_3 = |\frac{2 \cdot 3 \cdot 5}{7 \cdot 3^3}|_3 = |\frac{3}{3^3}|_3 = |\frac{1}{3^2}|_3 = 9 \text{ LARGE}$$

 $|\frac{a}{b}|_p$ a and b contain the same power of p, $|\frac{a}{b}|_p = 1$ SAME

Classical Egyptian Fractions

Definition (Errthum, Lager, 2009)

Let p be an odd prime. Then given any b and $a \in \mathbb{Q}_p$ where $a \neq 0$, there exists uniquely $q' = \frac{m}{p^k}$ with |q'| < p, and $r' \in \mathbb{Q}_p$ with $|r'|_p < |a|_p$ such that b = aq' + r'.

Acknowledgements

Definition (Errthum, Lager, 2009)

Let p be an odd prime. Then given any b and $a \in \mathbb{Q}_p$ where $a \neq 0$, there exists uniquely $q' = \frac{m}{p^k}$ with $|q'|_< p$, and $r' \in \mathbb{Q}_p$ with $|r'|_p < |a|_p$ such that b = aq' + r'.

 $\frac{5}{6}$ divided by $-\frac{2}{3}$ is 4 with a remainder of $\frac{7}{2}$ in the 7-adics.

$$\frac{5}{6} = \left(-\frac{2}{3}\right)4 + \frac{7}{2}$$

Definition (Errthum, Lager, 2009)

Let p be an odd prime. Then given any b and $a \in \mathbb{Q}_p$ where $a \neq 0$, there exists uniquely $q' = \frac{m}{p^k}$ with $|q'|_< p$, and $r' \in \mathbb{Q}_p$ with $|r'|_p < |a|_p$ such that b = aq' + r'.

 $\frac{5}{6}$ divided by $-\frac{2}{3}$ is 4 with a remainder of $\frac{7}{2}$ in the 7-adics. 20 divided by 5 is 4 with a remainder of 0 in the 7-adics.

$$\frac{5}{6} = \left(-\frac{2}{3}\right)4 + \frac{7}{2} \qquad 20 = 5 \cdot 4 + 0$$

Definition (Errthum, Lager, 2009)

Let p be an odd prime. Then given any b and $a \in \mathbb{Q}_p$ where $a \neq 0$, there exists uniquely $q' = \frac{m}{p^k}$ with |q'| < p, and $r' \in \mathbb{Q}_p$ with $|r'|_p < |a|_p$ such that b = aq' + r'.

 $\frac{5}{6}$ divided by $-\frac{2}{3}$ is 4 with a remainder of $\frac{7}{2}$ in the 7-adics. 20 divided by 5 is 4 with a remainder of 0 in the 7-adics. 20 divided by 5 is 1 with a remainder of 15 in the 3-adics.

$$\frac{5}{6} = \left(-\frac{2}{3}\right)4 + \frac{7}{2}$$
 $20 = 5 \cdot 4 + 0$ $20 = 5 \cdot 1 + 15$

p-Adic Greedy Algorithm

Classical p-Adic

Choose $\left|\frac{a}{b}\right| \le 1$. Choose $\left|\frac{a}{b}\right|_p \le 1$.

Classical

Choose $\left|\frac{a}{b}\right| \leq 1$.

Division algorithm $b, a \in \mathbb{Z} \longrightarrow q', r' \in \mathbb{Z}$ with $0 \le r' < |a|$ and b = aq' + r'

p-Adic

Choose $\left|\frac{a}{b}\right|_p \leq 1$.

Division algorithm $b, a \in \mathbb{Q} \longrightarrow q' = \frac{m}{p^k}, r' \in \mathbb{Q}$ with $0 \le |r'|_p < |a|_p$ and b = aq' + r'

Classical

Choose $\left|\frac{a}{b}\right| \leq 1$.

Division algorithm $b, a \in \mathbb{Z} \longrightarrow q', r' \in \mathbb{Z}$ with $0 \le r' < |a|$ and b = aq' + r'

Take q = q' + 1 so that b = aq - r.

p-Adic

Choose $\left|\frac{a}{b}\right|_p \leq 1$.

Division algorithm $b,a\in\mathbb{Q}\longrightarrow q'=rac{m}{p^k},r'\in\mathbb{Q}$ with $0\leq |r'|_p<|a|_p$ and b=aq'+r'

p / tale dreedy / tigoritim

Classical

Choose
$$\left|\frac{a}{b}\right| \leq 1$$
.

Division algorithm $b, a \in \mathbb{Z} \longrightarrow q', r' \in \mathbb{Z}$ with $0 \le r' < |a|$ and b = aq' + r'

Take
$$q = q' + 1$$
 so that $b = aq - r$.

p-Adic

Choose
$$\left|\frac{a}{b}\right|_p \leq 1$$
.

Division algorithm
$$b, a \in \mathbb{Q} \longrightarrow q' = \frac{m}{p^k}, r' \in \mathbb{Q}$$
 with $0 \le |r'|_p < |a|_p$ and $b = aq' + r'$

Take
$$q = q' + ?$$
 so that $b = aq - r$.

In the classical case,

$$q=q'+1$$

What is?

In the classical case,

$$q=q'+1$$

In the p-adic case,

$$q=q'+\left\lceilrac{b}{a}-q'
ight
ceil p$$

In the classical case,

$$q = q' + 1$$

In the p-adic case,

$$q=q'+\left\lceilrac{rac{b}{a}-q'}{p}
ight
ceil p$$

Choose p = 1 and pretend it's the classical case,

$$q=q'+\overbrace{\left[rac{b}{a}-\left\lfloorrac{b}{a}
ight
floor}{1}
ight]1}$$

Classical

Choose $\left|\frac{a}{b}\right| \leq 1$.

Division algorithm $b, a \in \mathbb{Z} \longrightarrow q', r' \in \mathbb{Z}$ with 0 < r' < |a| and b = aq' + r'

Take q = q' + 1 so that b = aq - r.

p-Adic

Choose
$$|\frac{a}{b}|_p \leq 1$$
.

Division algorithm $b, a \in \mathbb{Q} \longrightarrow q' = \frac{m}{p^k}, r' \in \mathbb{Q}$ with $0 \le |r'|_p < |a|_p$ and b = aq' + r'

Take
$$q = q' + ?$$
 so that $b = aq - r$.

Classical

Choose
$$\left|\frac{a}{b}\right| \leq 1$$
.

Division algorithm $b, a \in \mathbb{Z} \longrightarrow q', r' \in \mathbb{Z}$ with $0 \le r' < |a|$ and b = aq' + r'

Take q = q' + 1 so that b = aq - r.

p-Adic

Choose
$$\left|\frac{a}{b}\right|_p \leq 1$$
.

Division algorithm $b, a \in \mathbb{Q} \longrightarrow q' = \frac{m}{p^k}, r' \in \mathbb{Q}$ with $0 \le |r'|_p < |a|_p$ and b = aq' + r'

Take
$$q = q' + \left\lceil \frac{\frac{b}{a} - q'}{p} \right\rceil p$$
 so that $b = aq - r$.

p-Adic

p-Adic Egyptian Fraction

Instead of fractions of the form,

$$\frac{1}{d_1}+\frac{1}{d_2}+\cdots+\frac{1}{d_n}$$

with distinct terms, allow for increasing whole powers of a prime p to appear in the numerator,

$$\frac{p^{\varepsilon_1}}{d_1} + \frac{p^{\varepsilon_2}}{d_2} + \frac{p^{\varepsilon_3}}{d_3} + \dots + \frac{p^{\varepsilon_n}}{d_n}$$

with $0 < \varepsilon_n < \varepsilon_{n+1}$.

Classical Egyptian Fractions

Find the p-Egyptian fraction expansion of $\frac{2}{9}$ in \mathbb{Q}_5 .

Find the p-Egyptian fraction expansion of $\frac{2}{0}$ in \mathbb{Q}_5 .

$$b = aq' + r$$

$$b = aq' + r'$$
 $q = q' + \lceil \frac{\frac{b}{a} - q'}{p} \rceil p$

$$b = aq - r$$

Find the p-Egyptian fraction expansion of $\frac{2}{0}$ in \mathbb{Q}_5 .

$$b = aq' + r'$$

$$q = q' + \lceil rac{b}{a} - q'
ceil
ceil p$$

$$b = aq - r$$

$$9=2\cdot 2+5$$

Find the p-Egyptian fraction expansion of $\frac{2}{9}$ in \mathbb{Q}_5 .

$$b = aq' + r'$$

$$q = q' + \lceil rac{b}{a} - q'
ceil
ceil p$$

$$b = aq - r$$

$$9=2\cdot 2+5$$

$$q_1 = 2 + \lceil \frac{\frac{9}{2} - 2}{5} \rceil 5$$

Find the p-Egyptian fraction expansion of $\frac{2}{9}$ in \mathbb{Q}_5 .

$$b = aq' + r'$$

$$q = q' + \lceil \frac{b}{a} - q' \rceil p$$

$$b = aq - r$$

$$9 = 2 \cdot 2 + 5$$

$$q_1 = 2 + \lceil \frac{9}{2} - 2 \rceil 5$$

$$= 2 + \lceil \frac{1}{2} \rceil 5 = 7$$

Find the p-Egyptian fraction expansion of $\frac{2}{9}$ in \mathbb{Q}_5 .

$$b = aq' + r'$$

$$q = q' + \lceil \frac{\frac{b}{a} - q'}{p} \rceil p$$

$$\frac{9}{2}$$

$$9=2\cdot 2+5$$

$$q_1 = 2 + \lceil \frac{\frac{9}{2} - 2}{5} \rceil 5$$

$$=2+\lceil \frac{1}{2} \rceil 5=7$$
 $9=2\cdot 7-5$

$$9 = 2 \cdot 7 - 5$$

b = aq - r

Find the p-Egyptian fraction expansion of $\frac{2}{9}$ in \mathbb{Q}_5 .

$$b = aq' + r'$$
$$9 = 2 \cdot 2 + 5$$

$$q = q' + \lceil \frac{\frac{b}{a} - q'}{p} \rceil p$$

$$q_1 = 2 + \lceil \frac{\frac{9}{2} - 2}{5} \rceil 5$$

$$=2+\lceil \frac{1}{2} \rceil 5=7$$
 $9=2\cdot 7-5$

$$9=2\cdot 7-5$$

b = aq - r

$$9 \cdot \mathbf{7} = \mathbf{5} \left(\frac{13}{5} \right) + 50$$

Find the p-Egyptian fraction expansion of $\frac{2}{9}$ in \mathbb{Q}_5 .

$$b = aq' + r'$$

$$q = q' + \lceil rac{rac{b}{a} - q'}{p}
ceil p$$

$$b = aq - r$$

$$9 = 2 \cdot 2 + 5$$

$$q_1 = 2 + \left\lceil \frac{\frac{9}{2} - 2}{5} \right\rceil 5$$

$$=2+\lceil \frac{1}{2} \rceil 5=7$$
 $9=2\cdot 7-5$

$$9=2\cdot 7-5$$

$$9\cdot 7 = 5\left(\frac{13}{5}\right) + 50$$

$$9 \cdot 7 = 5\left(\frac{13}{5}\right) + 50$$
 $q_2 = \frac{13}{5} + \left\lceil \frac{\frac{63}{5} - \frac{13}{5}}{5} \right\rceil 5$

Find the p-Egyptian fraction expansion of $\frac{2}{0}$ in \mathbb{Q}_5 .

$$b = aq' + r' q = q' + \lceil \frac{\frac{b}{a} - q'}{p} \rceil p b = aq - r$$

$$9 = 2 \cdot 2 + 5 q_1 = 2 + \lceil \frac{\frac{9}{2} - 2}{5} \rceil 5$$

$$= 2 + \lceil \frac{1}{2} \rceil 5 = 7 9 = 2 \cdot 7 - 5$$

$$9 \cdot 7 = 5 \left(\frac{13}{5} \right) + 50 q_2 = \frac{13}{5} + \lceil \frac{\frac{63}{5} - \frac{13}{5}}{5} \rceil 5$$

$$= \frac{13}{5} + \lceil 2 \rceil 5 = \frac{63}{5}$$

Find the p-Egyptian fraction expansion of $\frac{2}{9}$ in \mathbb{Q}_5 .

$$b = aq' + r' q = q' + \lceil \frac{\frac{b}{a} - q'}{p} \rceil p b = aq - r$$

$$9 = 2 \cdot 2 + 5 q_1 = 2 + \lceil \frac{\frac{9}{2} - 2}{5} \rceil 5$$

$$= 2 + \lceil \frac{1}{2} \rceil 5 = 7 9 = 2 \cdot 7 - 5$$

$$9 \cdot 7 = 5 \left(\frac{13}{5} \right) + 50 q_2 = \frac{13}{5} + \lceil \frac{\frac{63}{5} - \frac{13}{5}}{5} \rceil 5$$

$$= \frac{13}{5} + \lceil 2 \rceil 5 = \frac{63}{5} 63 = 5 \left(\frac{63}{5} \right) - 0$$

Find the p-Egyptian fraction expansion of $\frac{2}{9}$ in \mathbb{Q}_5 .

$$b = aq' + r' \qquad q = q' + \lceil \frac{\frac{b}{a} - q'}{p} \rceil p \qquad b = aq - r$$

$$9 = 2 \cdot 2 + 5 \qquad q_1 = 2 + \lceil \frac{\frac{9}{2} - 2}{5} \rceil 5$$

$$= 2 + \lceil \frac{1}{2} \rceil 5 = 7 \qquad 9 = 2 \cdot 7 - 5$$

$$9 \cdot 7 = 5 \left(\frac{13}{5} \right) + 50 \qquad q_2 = \frac{13}{5} + \lceil \frac{\frac{63}{5} - \frac{13}{5}}{5} \rceil 5$$

$$= \frac{13}{5} + \lceil 2 \rceil 5 = \frac{63}{5} \qquad 63 = 5 \left(\frac{63}{5} \right) - 0$$

$$\frac{1}{7} + \frac{5}{63} = \frac{2}{0}$$

Alternate Egyptian fraction expansion

$$\frac{a}{b} = \frac{p^{\varepsilon_1}}{d_1} + \frac{p^{\varepsilon_2}}{d_2} + \dots + \frac{p^{\varepsilon_n}}{d_n}$$

$$\frac{a}{b} = \frac{p^{\varepsilon_1}}{d_1} + \frac{p^{\varepsilon_2}}{d_2} + \dots + \frac{p^{\varepsilon_n}}{d_n}$$

$$\frac{a}{b \cdot p^{\varepsilon_n}} = \frac{1}{d_1 \cdot p^{\varepsilon_n - \varepsilon_1}} + \frac{1}{d_2 \cdot p^{\varepsilon_n - \varepsilon_2}} + \dots + \frac{1}{d_n}$$

Alternate Egyptian fraction expansion

$$\frac{a}{b} = \frac{p^{\varepsilon_1}}{d_1} + \frac{p^{\varepsilon_2}}{d_2} + \dots + \frac{p^{\varepsilon_n}}{d_n}$$

$$\frac{a}{b \cdot p^{\varepsilon_n}} = \frac{1}{d_1 \cdot p^{\varepsilon_n - \varepsilon_1}} + \frac{1}{d_2 \cdot p^{\varepsilon_n - \varepsilon_2}} + \dots + \frac{1}{d_n}$$

How do we make $\frac{a}{b \cdot p^{\varepsilon_n}}$ the input?

Acknowledgements

Classical Egyptian Fractions

- Professor Errthum
- Winona State University, Foundation

