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Outline 

•  Continued fractions and the Euclidean 
Algorithm 

•  p-Adic numbers 

•  Continued fractions and the Euclidean 
algorithm in the p-adics 



A Simple Continued Fraction is a fraction of the 
form: 

where a0 is some integer and all 
other ai’s are positive integers 
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This can be expressed as [2;5,2,4,3] 
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Euclidean Algorithm 
The Euclidean Algorithm is used to determine the GCD 

of two integers a,b and is applied as follows: 

  

€ 

a = bq1 + r1
b = r1q2 + r2

r1 = r2q3 + r3


rn−1 = rnqn+1 + 0
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p‐adic Number 
Definition:  A p-adic Number is a power 

series in the prime p.  

There is a unique p-adic expansion for every 
real x,  

where m is an integer, cj are integers mod p.                             

€ 

x = c j p
j

j=m

∞

∑ = cm p
m + cm+1p

m+1 + cm+2p
m+3 + ...



Examples 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3 = 3
4 + 5 ⋅ 7 = 39
2 + 3 ⋅ 7 +1⋅ 72 = 72

5 ⋅ 7−1 + 2 =
19
7
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p‐Adic Norm (Hensel 1897) 
The p-adic norm of x is defined by: 
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prime factorization of x. 

€ 

x p = p−a



p‐Adic Norm (Hensel 1897) 
The p-adic norm of x is defined by: 

           where p is prime and a is the exponent in the 
prime factorization of x. 

Example:          can be written as a product of primes as follows: 

€ 

x p = p−a

€ 

63
550 3

= 3−2 =
1
9€ 

63
550

= 2−1 ⋅ 32 ⋅ 5−2 ⋅ 71 ⋅11−1
€ 

63
550

  using the formula we have: 

      

The more positive powers of p, the “smaller” the number is!! 



p‐Adic Norm (Hensel 1897) 
The p-adic norm of x is defined by: 

           where p is prime and a is the exponent in the 
prime factorization of x. 

Example:          can be written as a product of primes as follows: 

€ 

x p = p−a

€ 

63
550 3

= 3−2 =
1
9

63
550 5

= 5−(−2) = 25€ 

63
550

= 2−1 ⋅ 32 ⋅ 5−2 ⋅ 71 ⋅11−1
€ 

63
550

  using the formula we have: 

      

The more positive powers of p, the “smaller” the number is!! 



p‐Adic Norm (Hensel 1897) 
The p-adic norm of x is defined by: 

           where p is prime and a is the exponent in the 
prime factorization of x. 

Example:          can be written as a product of primes as follows: 

€ 

x p = p−a

€ 

63
550 3

= 3−2 =
1
9

63
550 5

= 5−(−2) = 25 63
550 13

=13−0 =1€ 

63
550

= 2−1 ⋅ 32 ⋅ 5−2 ⋅ 71 ⋅11−1
€ 

63
550

  using the formula we have: 

      

The more positive powers of p, the “smaller” the number is!! 



Small is big/Big is small? 

Compare 49 to 5/343 

Now use the 7-adic norm to find: 

so now                

                        converges 

€ 

5
343

= 51 ⋅ 7−3

€ 

49 = 72

€ 

5
343 7

= 7−(−3) = 343

€ 

49 7 = 7−2 =
1
49

€ 

70 + 71 + 72 + ...
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 We use the same type of method of pulling off the 
large portions and inverting the small. 

Where             and bn-1 is the “big part” of ζn-1 

€ 

ζ n = (ζ n−1 − bn−1)
−1

  

€ 

ζ 0 = b0 +
1

b1 +
1

b2 +
1

+
1
ζ n



€ 

ζ 0 =
69
5

= 5 + 3 ⋅11+ 2 ⋅112 + 2 ⋅113 + 2 ⋅114 + ...

b0 = 5



€ 

ζ 0 =
69
5

= 5 + 3 ⋅11+ 2 ⋅112 + 2 ⋅113 + 2 ⋅114 + ...

b0 = 5

ζ1 = 3 ⋅11+ 2 ⋅112 + 2 ⋅113 + 2 ⋅114 + ...( )−1

=
4
11
− 3+ 3 ⋅11− 3 ⋅112 + 3 ⋅113 − ...

b1 =
4
11
− 3 =

−29
11



€ 

ζ 0 =
69
5

= 5 + 3 ⋅11+ 2 ⋅112 + 2 ⋅113 + 2 ⋅114 + ...

b0 = 5

ζ1 = 3 ⋅11+ 2 ⋅112 + 2 ⋅113 + 2 ⋅114 + ...( )−1

=
4
11
− 3+ 3 ⋅11− 3 ⋅112 + 3 ⋅113 − ...

b1 =
4
11
− 3 =

−29
11

ζ 2 = 3 ⋅11− 3 ⋅112 + 3 ⋅113 − ...( )
−1

=
4
11

b2 =
4
11



€ 

ζ 0 =
69
5

= 5 + 3 ⋅11+ 2 ⋅112 + 2 ⋅113 + 2 ⋅114 + ...

b0 = 5

ζ1 = 3 ⋅11+ 2 ⋅112 + 2 ⋅113 + 2 ⋅114 + ...( )−1

=
4
11
− 3+ 3 ⋅11− 3 ⋅112 + 3 ⋅113 − ...

b1 =
4
11
− 3 =

−29
11

ζ 2 = 3 ⋅11− 3 ⋅112 + 3 ⋅113 − ...( )
−1

=
4
11

b2 =
4
11

€ 

⇒
69
5

= 5;−29
11
, 4
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 

  
 

  

69
5

= 5 +
1

−29
11

+
1
4
11



Compu$ng p‐adic inverses 
is hard 

Example:  Suppose we needed to 
compute 

The inverse does not start repeating 
until 420 terms in!  

€ 

−2 ⋅ 7 − 3 ⋅ 72 +1⋅ 73 + 3 ⋅ 74 − 2 ⋅ 75 − 3 ⋅ 76 +1⋅ 77 + 3 ⋅ 78 − ...( )
−1



Browkin’s method is 
similar to finding the 

simple con$nued frac$ons 
of reals.  Can we use the 
Euclidean Algorithm 

instead? 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Summary
•The Euclidean Algorithm is used to construct simple continued 
fractions

•Defined a p-adic number

•Browkin’s Model for finding continued fractions in p-adics

•The new p-Adic Euclidean Algorithm for constructing continued 
fractions in p-adics

•The two methods are mathematically the same, but 
computationally our way is easier and faster.

Questions?
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