Continued Fractions \& a p-Adic Euclidean Algorithm

Presented by:
Erica Fremstad \& Cortney Lager

Outline

- Continued fractions and the Euclidean Algorithm
- p-Adic numbers
- Continued fractions and the Euclidean algorithm in the p -adics

A Simple Continued Fraction is a fraction of the form:

where a_{0} is some integer and all other a_{i} 's are positive integers

$$
\text { Example: } \frac{345}{158}
$$

$$
\begin{aligned}
& \text { Example: } \frac{345}{158} \\
& \frac{345}{158}=2+\frac{29}{158}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Example: } \frac{345}{158} \\
& \frac{345}{158}=2+\frac{29}{158}=2+\frac{1}{\frac{158}{29}}
\end{aligned}
$$

Example: $\frac{345}{158}$

$$
\frac{345}{158}=2+\frac{29}{158}=2+\frac{1}{\frac{158}{29}}=2+\frac{1}{5+\frac{13}{29}}
$$

Example: $\frac{345}{158}$

$$
\frac{345}{158}=2+\frac{29}{158}=2+\frac{1}{\frac{158}{29}}=2+\frac{1}{5+\frac{13}{29}}=2+\frac{1}{5+\frac{1}{\frac{29}{13}}}
$$

$$
\begin{aligned}
& \text { Example: } \frac{345}{158} \\
& \frac{345}{158}=2+\frac{29}{158}=2+\frac{1}{\frac{158}{29}}=2+\frac{1}{5+\frac{13}{29}}=2+\frac{1}{5+\frac{1}{\frac{29}{13}}} \\
& =2+\frac{1}{5+\frac{1}{2+\frac{3}{13}}}
\end{aligned}
$$

Example: $\frac{345}{158}$

$$
\begin{aligned}
& \frac{345}{158}=2+\frac{29}{158}=2+\frac{1}{\frac{158}{29}}=2+\frac{1}{5+\frac{13}{29}}=2+\frac{1}{5+\frac{1}{\frac{29}{13}}} \\
& =2+\frac{1}{5+\frac{1}{2+\frac{3}{13}}}=2+\frac{1}{5+\frac{1}{2+\frac{1}{\frac{13}{3}}}}
\end{aligned}
$$

Example: $\frac{345}{158}$

$$
\begin{aligned}
& \frac{345}{158}=2+\frac{29}{158}=2+\frac{1}{\frac{158}{29}}=2+\frac{1}{5+\frac{13}{29}}=2+\frac{1}{5+\frac{1}{\frac{29}{13}}} \\
& =2+\frac{1}{5+\frac{1}{2+\frac{3}{13}}}=2+\frac{1}{5+\frac{1}{2+\frac{1}{\frac{13}{3}}}}=2+\frac{1}{5+\frac{1}{2+\frac{1}{4+\frac{1}{3}}}}
\end{aligned}
$$

Example: $\frac{345}{158}$

$$
\begin{aligned}
& \frac{345}{158}=2+\frac{29}{158}=2+\frac{1}{\frac{158}{29}}=2+\frac{1}{5+\frac{13}{29}}=2+\frac{1}{5+\frac{1}{\frac{29}{13}}} \\
& =2+\frac{1}{5+\frac{1}{2+\frac{3}{13}}}=2+\frac{1}{5+\frac{1}{2+\frac{1}{\frac{13}{3}}}}=2+\frac{1}{5+\frac{1}{2+\frac{1}{4+\frac{1}{3}}}}
\end{aligned}
$$

This can be expressed as $[2 ; 5,2,4,3]$

Euclidean Algorithm

The Euclidean Algorithm is used to determine the GCD of two integers a, b and is applied as follows:

$$
a=b q_{1}+r_{1}
$$

Euclidean Algorithm

The Euclidean Algorithm is used to determine the GCD of two integers a, b and is applied as follows:

$$
\begin{aligned}
& a=b q_{1}+r_{1} \\
& b=r_{1} q_{2}+r_{2}
\end{aligned}
$$

Euclidean Algorithm

The Euclidean Algorithm is used to determine the GCD of two integers a, b and is applied as follows:

$$
\begin{aligned}
& a=b q_{1}+r_{1} \\
& b=r_{1} q_{2}+r_{2} \\
& r_{1}=r_{2} q_{3}+r_{3}
\end{aligned}
$$

Euclidean Algorithm

The Euclidean Algorithm is used to determine the GCD of two integers a, b and is applied as follows:

$$
\begin{aligned}
& a=b q_{1}+r_{1} \\
& b=r_{1} q_{2}+r_{2}
\end{aligned}
$$

$$
r_{1}=r_{2} q_{3}+r_{3}
$$

$$
\Rightarrow r_{n-1}=r_{n} q_{n+1}+0
$$

Using the procedure for the Euclidean Algorithm:

$$
345=158 \cdot 2+29
$$

Using the procedure for the Euclidean Algorithm:

$345=158 \cdot 2+29$
$158=29 \cdot 5+13$

Using the procedure for the Euclidean Algorithm:

$$
\begin{gathered}
345=158 \cdot 2+29 \\
158=29 \cdot 5+13 \\
29=13 \cdot 2+3
\end{gathered}
$$

Using the procedure for the Euclidean Algorithm:

$$
\begin{gathered}
345=158 \cdot 2+29 \\
158=29 \cdot 5+13 \\
29=13 \cdot 2+3 \\
13=3 \cdot 4+1
\end{gathered}
$$

Using the procedure for the Euclidean Algorithm:

$$
\begin{gathered}
345=158 \cdot 2+29 \\
158=29 \cdot 5+13 \\
29=13 \cdot 2+3 \\
13=3 \cdot 4+1 \\
3=1 \cdot 3+0
\end{gathered}
$$

Using the procedure for the Euclidean Algorithm:

$$
345=158 \cdot 2+29
$$
$$
158=29 \cdot 5+13
$$
$$
29=13 \cdot 2+3
$$
$$
13=3 \cdot 4+1
$$
$$
3=1 \cdot 3+0
$$

The Euclidean
Algorithm can be used to find simple continued fractions of a rational number.

Using the procedure for the Euclidean Algorithm:

$345=158 \cdot 2+29$
$158=29 \cdot 2+13$
$29=13 \cdot 2+3$
$13=3 \cdot 4+1$
$3=1 \cdot 3+0$

The Euclidean
Algorithm can be used to find simple continued fractions of a rational number.

p-adic Number

Definition: A p-adic Number is a power series in the prime p .

There is a unique p-adic expansion for every real x ,

$$
x=\sum_{j=m}^{\infty} c_{j} p^{j}=c_{m} p^{m}+c_{m+1} p^{m+1}+c_{m+2} p^{m+3}+\ldots
$$

where m is an integer, c_{j} are integers mod p.

Examples

$3=3$
$4+5 \cdot 7=39$
$2+3 \cdot 7+1 \cdot 7^{2}=72$

$$
5 \cdot 7^{-1}+2=\frac{19}{7}
$$

Example

What about:

$$
4+3 \cdot 7+3 \cdot 7^{2}+3 \cdot 7^{3}+3 \cdot 7^{4}+\cdots
$$

Example

$$
\begin{aligned}
& 4+3 \cdot 7+3 \cdot 7^{2}+3 \cdot 7^{3}+3 \cdot 7^{4}+\cdots \\
& =1+\left(3 \cdot 7^{0}+3 \cdot 7^{1}+3 \cdot 7^{2}+3 \cdot 7^{3}+3 \cdot 7^{4}+\cdots\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& 4+3 \cdot 7+3 \cdot 7^{2}+3 \cdot 7^{3}+3 \cdot 7^{4}+\cdots \\
& =1+\left(3 \cdot 7^{0}+3 \cdot 7^{1}+3 \cdot 7^{2}+3 \cdot 7^{3}+3 \cdot 7^{4}+\cdots\right) \\
& =1+3\left(7^{0}+7^{1}+7^{2}+\cdots\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& 4+3 \cdot 7+3 \cdot 7^{2}+3 \cdot 7^{3}+3 \cdot 7^{4}+\cdots \\
& =1+\left(3 \cdot 7^{0}+3 \cdot 7^{1}+3 \cdot 7^{2}+3 \cdot 7^{3}+3 \cdot 7^{4}+\cdots\right) \\
& =1+3\left(7^{0}+7^{1}+7^{2}+\cdots\right) \\
& =1+3\left(\frac{1}{1-7}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& 4+3 \cdot 7+3 \cdot 7^{2}+3 \cdot 7^{3}+3 \cdot 7^{4}+\cdots \\
& =1+\left(3 \cdot 7^{0}+3 \cdot 7^{1}+3 \cdot 7^{2}+3 \cdot 7^{3}+3 \cdot 7^{4}+\cdots\right) \\
& =1+3\left(7^{0}+7^{1}+7^{2}+\cdots\right) \\
& =1+3\left(\frac{1}{1-7}\right) \\
& =1+3\left(-\frac{1}{6}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& 4+3 \cdot 7+3 \cdot 7^{2}+3 \cdot 7^{3}+3 \cdot 7^{4}+\cdots \\
& =1+\left(3 \cdot 7^{0}+3 \cdot 7^{1}+3 \cdot 7^{2}+3 \cdot 7^{3}+3 \cdot 7^{4}+\cdots\right) \\
& =1+3\left(7^{0}+7^{1}+7^{2}+\cdots\right) \\
& =1+3\left(\frac{1}{1-7}\right) \\
& =1+3\left(-\frac{1}{6}\right) \\
& =1+-\frac{3}{6}
\end{aligned}
$$

Example

$$
\begin{aligned}
& 4+3 \cdot 7+3 \cdot 7^{2}+3 \cdot 7^{3}+3 \cdot 7^{4}+\cdots \\
& =1+\left(3 \cdot 7^{0}+3 \cdot 7^{1}+3 \cdot 7^{2}+3 \cdot 7^{3}+3 \cdot 7^{4}+\cdots\right) \\
& =1+3\left(7^{0}+7^{1}+7^{2}+\cdots\right) \\
& =1+3\left(\frac{1}{1-7}\right) \\
& =1+3\left(-\frac{1}{6}\right) \\
& =1+-\frac{3}{6} \\
& =\frac{1}{2}
\end{aligned}
$$

p-Adic Norm (Hensel 1897)

The p -adic norm of x is defined by: $|x|_{p}=p^{-a}$ where p is prime and a is the exponent in the prime factorization of x .

p-Adic Norm (Hensel 1897)

The p -adic norm of x is defined by: $|x|_{p}=p^{-a}$ where p is prime and a is the exponent in the prime factorization of x.
63
Example: $\overline{550}$ can be written as a product of primes as follows:

$$
\frac{63}{550}=2^{-1} \cdot 3^{2} \cdot 5^{-2} \cdot 7^{1} \cdot 11^{-1}
$$

using the formula we have:

$$
\left|\frac{63}{550}\right|_{3}=3^{-2}=\frac{1}{9}
$$

The more positive powers of p, the "smaller" the number is!!

p-Adic Norm (Hensel 1897)

The p -adic norm of x is defined by: $|x|_{p}=p^{-a}$ where p is prime and a is the exponent in the prime factorization of x .
63
Example: $\overline{550}$ can be written as a product of primes as follows:

$$
\frac{63}{550}=2^{-1} \cdot 3^{2} \cdot 5^{-2} \cdot 7^{1} \cdot 11^{-1}
$$

using the formula we have:

$$
\left|\frac{63}{550}\right|_{3}=3^{-2}=\frac{1}{9} \quad\left|\frac{63}{550}\right|_{5}=5^{-(-2)}=25
$$

The more positive powers of p, the "smaller" the number is!!

p-Adic Norm (Hensel 1897)

The p -adic norm of x is defined by: $|x|_{p}=p^{-a}$ where p is prime and a is the exponent in the prime factorization of x .
63
Example: $\overline{550}$ can be written as a product of primes as follows:

$$
\frac{63}{550}=2^{-1} \cdot 3^{2} \cdot 5^{-2} \cdot 7^{1} \cdot 11^{-1}
$$

using the formula we have:

$$
\left|\frac{63}{550}\right|_{3}=3^{-2}=\frac{1}{9} \quad\left|\frac{63}{550}\right|_{5}=5^{-(-2)}=25 \quad\left|\frac{63}{550}\right|_{13}=13^{-0}=1
$$

The more positive powers of p, the "smaller" the number is!!

Small is big/Big is small?

Compare 49 to $5 / 343$

$$
49=7^{2} \quad \frac{5}{343}=5^{1} \cdot 7^{-3}
$$

Now use the 7 -adic norm to find:

$$
|49|_{7}=7^{-2}=\frac{1}{49} \quad\left|\frac{5}{343}\right|_{7}=7^{-(-3)}=343
$$

so now
$7^{0}+7^{1}+7^{2}+\ldots$ converges

Browkin's Model of Continued Fractions in p-adics (1978)

Browkin's Model of Continued Fractions in p-adics (1978)

We use the same type of method of pulling off the large portions and inverting the small.

$$
\zeta_{0}=b_{0}+\frac{1}{b_{1}+\frac{1}{b_{2}+\frac{1}{\ddots+\frac{1}{\zeta_{n}}}}}
$$

Where $\zeta_{n}=\left(\zeta_{n-1}-b_{n-1}\right)^{-1}$ and $\mathrm{b}_{\mathrm{n}-1}$ is the "big part" of $\zeta_{\mathrm{n}-1}$

$$
\begin{aligned}
& \zeta_{0}=\frac{69}{5}=5+3 \cdot 11+2 \cdot 11^{2}+2 \cdot 11^{3}+2 \cdot 11^{4}+\ldots \\
& b_{0}=5
\end{aligned}
$$

$$
\begin{aligned}
\zeta_{0} & =\frac{69}{5}=5+3 \cdot 11+2 \cdot 11^{2}+2 \cdot 11^{3}+2 \cdot 11^{4}+\ldots \\
b_{0} & =5 \\
\zeta_{1} & =\left(3 \cdot 11+2 \cdot 11^{2}+2 \cdot 11^{3}+2 \cdot 11^{4}+\ldots\right)^{-1} \\
& =\frac{4}{11}-3+3 \cdot 11-3 \cdot 11^{2}+3 \cdot 11^{3}-\ldots \\
b_{1} & =\frac{4}{11}-3=\frac{-29}{11}
\end{aligned}
$$

$$
\begin{aligned}
\zeta_{0} & =\frac{69}{5}=5+3 \cdot 11+2 \cdot 11^{2}+2 \cdot 11^{3}+2 \cdot 11^{4}+\ldots \\
b_{0} & =5 \\
\zeta_{1} & =\left(3 \cdot 11+2 \cdot 11^{2}+2 \cdot 11^{3}+2 \cdot 11^{4}+\ldots\right)^{-1} \\
& =\frac{4}{11}-3+3 \cdot 11-3 \cdot 11^{2}+3 \cdot 11^{3}-\ldots \\
b_{1} & =\frac{4}{11}-3=\frac{-29}{11} \\
\zeta_{2} & =\left(3 \cdot 11-3 \cdot 11^{2}+3 \cdot 11^{3}-\ldots\right)^{-1} \\
& =\frac{4}{11} \\
b_{2} & =\frac{4}{11}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\zeta_{0} & =\frac{69}{5}=5+3 \cdot 11+2 \cdot 11^{2}+2 \cdot 11^{3}+2 \cdot 11^{4}+\ldots \\
b_{0} & =5 \\
\zeta_{1} & =\left(3 \cdot 11+2 \cdot 11^{2}+2 \cdot 11^{3}+2 \cdot 11^{4}+\ldots\right)^{-1} & \\
& =\frac{4}{11}-3+3 \cdot 11-3 \cdot 11^{2}+3 \cdot 11^{3}-\ldots & \\
b_{1} & =\frac{4}{11}-3=\frac{-29}{11} & & \Rightarrow \frac{69}{5}=\left[5 ; \frac{-29}{11}, \frac{4}{11}\right] \\
\zeta_{2} & =\left(3 \cdot 11-3 \cdot 11^{2}+3 \cdot 11^{3}-\ldots\right)^{-1} \\
& =\frac{4}{11} \quad \frac{69}{5}=5+\frac{1}{\frac{-29}{11}+\frac{1}{4}} \\
b_{2} & =\frac{4}{11} &
\end{array}
$$

Computing p-adic inverses is hard

Example: Suppose we needed to compute

$$
\left(-2 \cdot 7-3 \cdot 7^{2}+1 \cdot 7^{3}+3 \cdot 7^{4}-2 \cdot 7^{5}-3 \cdot 7^{6}+1 \cdot 7^{7}+3 \cdot 7^{8}-\ldots\right)^{-1}
$$

The inverse does not start repeating until 420 terms in!

Browkin's method is similar to finding the

 simple continued fractions of reals. Can we use the Euclidean Algorithm instead?
Example, 69/5 Again

$$
69=q \cdot 5+11 r
$$

Example, 69/5 Again

$$
\begin{aligned}
& 69=q \cdot 5+11 r \\
& 69 \equiv q \cdot 5 \bmod 11
\end{aligned}
$$

Example, 69/5 Again

$$
\begin{aligned}
& 69=q \cdot 5+11 r \\
& 69 \equiv q \cdot 5 \bmod 11 \\
& 3 \equiv q \cdot 5 \bmod 11
\end{aligned}
$$

Example, 69/5 Again

$$
\begin{aligned}
& 69=q \cdot 5+11 r \\
& 69 \equiv q \cdot 5 \bmod 11 \\
& 3 \equiv q \cdot 5 \bmod 11 \\
& \Rightarrow q \equiv 5 \bmod 11
\end{aligned}
$$

Example, 69/5 Again

$$
\begin{aligned}
& 69=q \cdot 5+11 r \\
& 69 \equiv q \cdot 5 \bmod 11 \\
& 3 \equiv q \cdot 5 \bmod 11 \\
& \Rightarrow q \equiv 5 \bmod 11 \\
& 69=5 \cdot 5+11 \cdot 4
\end{aligned}
$$

Example, 69/5 Again

$$
\begin{aligned}
& 69=q \cdot 5+11 r \\
& 69 \equiv q \cdot 5 \mathrm{mod} 11 \\
& 3 \equiv q \cdot 5 \mathrm{mod} 11 \\
& \Rightarrow q \equiv 5 \mathrm{mod} 11 \\
& 69=5 \cdot 5+11 \cdot 4 \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
& 5=q \cdot 11 \cdot 4+11^{2} r
\end{aligned}
$$

Example, 69/5 Again

$$
\begin{aligned}
& 69=q \cdot 5+11 r \\
& 69 \equiv q \cdot 5 \bmod 11 \\
& 3 \equiv q \cdot 5 \bmod 11 \\
& \Rightarrow q \equiv 5 \bmod 11 \\
& 69=5 \cdot 5+11 \cdot 4 \\
& \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
& 5=q \cdot 11 \cdot 4+11^{2} r \\
& 5=\left(\frac{q^{\prime}}{11}\right) 11 \cdot 4+11^{2} r
\end{aligned}
$$

Example, 69/5 Again

$$
\begin{aligned}
& 69=q \cdot 5+11 r \\
& 69 \equiv q \cdot 5 \bmod 11 \\
& 3 \equiv q \cdot 5 \bmod 11 \\
& \Rightarrow q \equiv 5 \bmod 11 \\
& 69=5 \cdot 5+11 \cdot 4 \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
& 5=q \cdot 11 \cdot 4+11^{2} r \\
& 5=\left(\frac{q^{\prime}}{11}\right) 11 \cdot 4+11^{2} r \\
& 5=q^{\prime} \cdot 4 \bmod 121
\end{aligned}
$$

Example, 69/5 Again

$$
\begin{aligned}
& 69=q \cdot 5+11 r \\
& 69 \equiv q \cdot 5 \bmod 11 \\
& 3 \equiv q \cdot 5 \bmod 11 \\
& \Rightarrow q \equiv 5 \bmod 11 \\
& 69=5 \cdot 5+11 \cdot 4 \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
& 5=q \cdot 11 \cdot 4+11^{2} r \\
& 5=\left(\frac{q^{\prime}}{11}\right) 11 \cdot 4+11^{2} r \\
& 5=q^{\prime} \cdot 4 \bmod 121
\end{aligned}
$$

$$
q^{\prime} \equiv 92 \equiv-29 \bmod 121
$$

Example, 69/5 Again

$$
\begin{aligned}
& 69=q \cdot 5+11 r \\
& 69 \equiv q \cdot 5 \bmod 11 \\
& 3 \equiv q \cdot 5 \bmod 11 \\
& \Rightarrow q \equiv 5 \bmod 11 \\
& 69=5 \cdot 5+11 \cdot 4 \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
& 5=q \cdot 11 \cdot 4+11^{2} r \\
& 5=\left(\frac{q^{\prime}}{11}\right) 11 \cdot 4+11^{2} r \\
& 5=q^{\prime} \cdot 4 \bmod 121
\end{aligned}
$$

$$
q^{\prime} \equiv 92 \equiv-29 \bmod 121
$$

Example, 69/5 Again

$$
\begin{array}{ll}
69=q \cdot 5+11 r & q^{\prime} \equiv 92 \equiv-29 \bmod 121 \\
69 \equiv q \cdot 5 \bmod 11 & 5=\frac{-29}{11} \cdot 11 \cdot 4+11^{2} \cdot 1 \\
3 \equiv q \cdot 5 \bmod 11 & \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \\
\Rightarrow q \equiv 5 \bmod 11 & 11 \cdot 4=q \cdot 11^{2} \cdot 1+11^{3} r \\
69=5 \cdot 5+11 \cdot 4 &
\end{array}
$$

$$
5=q \cdot 11 \cdot 4+11^{2} r
$$

$$
5=\left(\frac{q^{\prime}}{11}\right) 11 \cdot 4+11^{2} r
$$

$$
5=q^{\prime} \cdot 4 \bmod 121
$$

Example, 69/5 Again

$$
\begin{array}{ll}
69=q \cdot 5+11 r & q^{\prime} \equiv 92 \equiv-29 \bmod 121 \\
69 \equiv q \cdot 5 \bmod 11 & 5=\frac{-29}{11} \cdot 11 \cdot 4+11^{2} \cdot 1 \\
3 \equiv q \cdot 5 \bmod 11 & \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
\Rightarrow q \equiv 5 \bmod 11 & 11 \cdot 4=q \cdot 11^{2} \cdot 1+11^{3} r \\
69=5 \cdot 5+11 \cdot 4 & 11 \cdot 4=\left(\frac{q^{\prime}}{11}\right) 11^{2} \cdot 1+11^{3} r \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots & \\
5=q \cdot 11 \cdot 4+11^{2} r & \\
5=\left(\frac{q^{\prime}}{11}\right) 11 \cdot 4+11^{2} r & \\
5=q^{\prime} \cdot 4 \bmod 121 &
\end{array}
$$

Example, 69/5 Again

$$
\begin{array}{ll}
69=q \cdot 5+11 r & q^{\prime} \equiv 92 \equiv-29 \bmod 121 \\
69 \equiv q \cdot 5 \bmod 11 & 5=\frac{-29}{11} \cdot 11 \cdot 4+11^{2} \cdot 1 \\
3 \equiv q \cdot 5 \bmod 11 & \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
\Rightarrow q \equiv 5 \bmod 11 & 11 \cdot 4=q \cdot 11^{2} \cdot 1+11^{3} r \\
69=5 \cdot 5+11 \cdot 4 & 11 \cdot 4=\left(\frac{q^{\prime}}{11}\right) 11^{2} \cdot 1+11^{3} r \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots . & 11 \cdot 4=\left(\frac{4}{11}\right) 11^{2} \cdot 1+11^{3} \cdot 0 \\
5=q \cdot 11 \cdot 4+11^{2} r & \\
5=\left(\frac{q^{\prime}}{11}\right) 11 \cdot 4+11^{2} r & \\
5=q^{\prime} \cdot 4 \bmod 121 &
\end{array}
$$

Example, 69/5 Again

$$
\begin{array}{ll}
69=q \cdot 5+11 r & q^{\prime} \equiv 92 \equiv-29 \bmod 121 \\
69 \equiv q \cdot 5 \bmod 11 & 5=\frac{-29}{11} \cdot 11 \cdot 4+11^{2} \cdot 1 \\
3 \equiv q \cdot 5 \bmod 11 & \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
\Rightarrow q \equiv 5 \bmod 11 & 11 \cdot 4=q \cdot 11^{2} \cdot 1+11^{3} r \\
69=5 \cdot 5+11 \cdot 4 & 11 \cdot 4=\left(\frac{q^{\prime}}{11}\right) 11^{2} \cdot 1+11^{3} r \\
\ldots \ldots \ldots \ldots \ldots \ldots . & 11 \cdot 4=\left(\frac{4}{11}\right) 11^{2} \cdot 1+11^{3} \cdot 0 \\
5=q \cdot 11 \cdot 4+11^{2} r & \frac{69}{5}=\left[5, \frac{-29}{11}, \frac{4}{11}\right] \\
5=\left(\frac{q^{\prime}}{11}\right) 11 \cdot 4+11^{2} r & \\
5=q^{\prime} \cdot 4 \bmod 121 &
\end{array}
$$

$$
\begin{array}{ll}
\text { In general, } \frac{a}{b} & q_{1}=a b^{-1} \bmod p \\
a=q_{1} \cdot b+p \cdot k_{1} & q_{2}=\frac{b k_{1}^{-1} \bmod p^{2}}{p} \\
b=q_{2} \cdot p k_{1}+p^{2} k_{2} & q_{3}=\frac{k_{1} k_{2}^{-1} \bmod p^{2}}{p}
\end{array}
$$

until $k_{n}=0$

Prove: $\operatorname{Our}\left(q_{i}\right)=\operatorname{Browkin}\left(b_{i}\right)$

We know:

$$
\begin{aligned}
& \zeta_{i}=\left(\zeta_{i-1}-b_{i-1}\right)^{-1} \\
& \Rightarrow b_{i}=\zeta_{i}-\left(\zeta_{i+1}\right)^{-1}
\end{aligned}
$$

$$
\zeta_{i}=\frac{r_{i-2}}{r_{i-1}} \Rightarrow \zeta_{i+1}=\frac{r_{i-1}}{r_{i}}
$$

Proof:

$$
\begin{aligned}
& r_{i-2}=q_{i} r_{i-1}+r_{i} \\
& q_{i}=\frac{r_{i-2}-r_{i}}{r_{i-1}}=\frac{r_{i-2}}{r_{i-1}}-\frac{r_{i}}{r_{i-1}} \\
& \therefore q_{i}=\zeta_{i}-\left(\zeta_{i+1}\right)^{-1}=b_{i}
\end{aligned}
$$

Summary

-The Euclidean Algorithm is used to construct simple continued fractions
-Defined a p-adic number
-Browkin's Model for finding continued fractions in p-adics
-The new p-Adic Euclidean Algorithm for constructing continued fractions in p -adics
-The two methods are mathematically the same, but computationally our way is easier and faster.

Questions?

Bibliography

Baker, A.J. An Introduction to p-adic Numbers and p-adic Analysis. 8 December 2007. September 2008 http://www.maths.gla.ac.uk/~ajb/dvi-ps/padicnotes.pdf.

Browkin, Jerzy. "Continued Fractions in Local Fields." Demonstratio Mathematica (1978): 67-82.

Cuoco, A. "Visualizing the p-adic Integers." The American Mathematical Monthly (1991): 355-364.

Madore, David. A First Introduction to p-adic Numbers. 7 December 2000. September 2008 http://www.madore.org/~david/math/padics.pdf.
p-adic number. 20 November 2008. August 2008 http://en.wikipedia.org/wiki/Padic.

Watkins, Matthew R. p-adic Numbers and Adeles - An Introduction. September 2008 http://www.secamlocal.ex.ac.uk/people/staff/mrwatkin/zeta/padicsandadeles.htm.

Weisstein, Eric W. p-adic Number. August 2008 http://mathworld.wolfram.com/padicNumber.html.

