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Introduction p-adic Algorithms Applications Summary

Definitions

For each prime p, there exists a norm | · |p defined by∣∣∣a
b

∣∣∣
p

= pv(b)−v(a)

where v(n) is the number of times p divides the integer n.

Example

Which is ”smaller” 162 or 5
27 according to the norm in the

3-adics?

|162|3 = 3−4 <

∣∣∣∣ 5

27

∣∣∣∣
3

= 33.

Thus, 162 is ”smaller” than 5
27 in the 3-adics.
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Definition

An element ζ ∈ Qp is a power series in the prime p,

ζ =
∞∑

j=m

cjp
j = cmpm + cm+1p

m+1 + cm+2p
m+2 + . . .

where m is a (possibly negative) integer and

cj ∈
{

1−p
2 , . . . , p−1

2

}
.
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Example

What is
4 + 3 · 7 + 3 · 72 + 3 · 73 + · · ·?

Using the geometric series rule naively gives the following,

4 + 3 · 7 + 3 · 72 + 3 · 73 + · · · = 1 + 3

(
1

1− 7

)
=

1

2
.
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p-adic Divison Algorithm

Theorem

Given any s and t ∈ Z, there exists uniquely q ∈ Z and r ∈ Z with
0 < r < t such that

s = qt + r .

Theorem

Given any σ and τ ∈ Qp, there exists uniquely q ∈ Q with |q| < p
2

and η ∈ Qp with |η|p < |τ |p such that

σ = qτ + η.

Example (in the 7-adics)

181625

11

=

(2)

(
10555

2

)
+

(
9360

11
· 71

)
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p-adic Euclidean Algorithm

The p-Adic Euclidean Algorithm applied to σ and τ ∈ Qp is as
follows:

σ = q1τ + η1

τ = q2η1 + η2

η1 = q3η2 + η3

...

ηi−2 = qiηi−1 + ηi

...

This process either continues indefinitely or stops when ηi = 0.
The outputs of this algorithm are the sequences {qi} and {ηi}.
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Example

The 7-Adic Euclidean Algorithm applied to 181625
11 and 10555

2 yields

181625

11
= (2)

(
10555

2

)
+

(
9360

11
· 71

)
10555

2
=

(
12

7

) (
9360

11
· 71

)
+

(
−2215

22
· 72

)
9360

11
· 71 =

(
−10

7

) (
−2215

22
· 72

)
+

(
−5

11
· 74

)
−2215

22
· 72 =

(
50

72

) (
−5

11
· 74

)
+

(
−5

22
· 75

)
−5

11
· 74 =

(
2

7

) (
−5

22
· 75

)
+ 0
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Greatest Common Divisor
Definition

Let a, b ∈ Z, then the g=(a,b) is the positive integer that satisfies
the following properties,
(i.) a

g ,
b
g ∈ Z and,

(ii.) if there exists f with a
f ,

b
f ∈ Z, then g

f ∈ Z.

We can extend the definition of the gcd to a
b ,

c
d ∈ Q by setting(a

b
,
c

d

)
=

gcd(a, c)

lcm(b, d)
.

Theorem

Let σ, τ ∈ Q ⊆ Qp with σ = spv(σ), τ = tpv(τ). Then the p-adic
Euclidean Algorithm applied to σ and τ stops after k-steps and if
ηi = hip

εi , then |hk−1| = gcd(t, s).
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Example

181625

11
= (2)

(
10555

2

)
+

(
9360

11
· 71

)
10555

2
=

(
12

7

) (
9360

11
· 71

)
+

(
−2215

22
· 72

)
9360

11
· 71 =

(
−10

7

) (
−2215

22
· 72

)
+

(
−5

11
· 74

)
−2215

22
· 72 =

(
50

72

) (
−5

11
· 74

)
+

(
−5

22
· 75

)
−5

11
· 74 =

(
2

7

) (
−5

22
· 75

)
+ 0

⇒ gcd

(
181625

11
,

10555

2

)
=

5

22
.
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Classical Simple Continued Fraction

Definition

a

b
= q1 +

1

q2 +
1

q3 +
1

. . .

where qi are positive integers.

Theorem

The qi s are the quotients from the Euclidean Algorithm of a and b.
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p-adic Simple Continued Fraction

Definition (Browkin)

For ζ ∈ Qp,

ζ = b1 +
1

b2 +
1

b3 +
1

. . .

where bi ∈ Q with |bi | < p
2 .

Browkin’s method computes the bi s through a series of p-adic
inverses.
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p-adic Simple Continued Fraction

Example

72650

23221
= 2 +

1
12

7
+

1
−10

7
+

1
50

72
+

1
2

7

Theorem

Let {qi} be the outputs of the p-adic Euclidean Algorithm applied
to σ and τ , then σ

τ = q1 + 1

q2 +
1

q3 +
1

. . .
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Example
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+ 0
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10555
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23221
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+
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50

72
+
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Summary

We defined a p-adic Division Algorithm and a p-adic
Euclidean Algorithm.

The p-adic Eulcidean Algorithm computes a generalized gcd
along with a finite simple continued fraction.

In conclusion, the p-adic Euclidean Algorithm is
computationally easier than Browkin’s method that uses
p-adic inverses, but mathematically the two methods are the
same.

Finally, I would like to give a special thank you to Dr. Eric
Errthum for begin my mentor throughout this project.

Questions?
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