Introduction	p-adic Algorithms	Applications	Summary

Cortney Lager Winona State University

April 25, 2009

A ■

Introduction ●○○	<i>p</i> -adic Algorithms	Applications	Summary O
Definitions			

$$\left.\frac{a}{b}\right|_p = p^{v(b)-v(a)}$$

where v(n) is the number of times p divides the integer n.

▲ 문 ▶ | ▲ 문 ▶

Introduction ●○○	<i>p</i> -adic Algorithms	Applications	Summary O
Definitions			

$$\left|\frac{a}{b}\right|_p = p^{v(b)-v(a)}$$

where v(n) is the number of times p divides the integer n.

Example

Introduction ●○○	<i>p</i> -adic Algorithms	Applications	Summary O
Definitions			

$$\left.\frac{a}{b}\right|_p = p^{v(b)-v(a)}$$

where v(n) is the number of times p divides the integer n.

Example

• Which is "smaller" 162 or $\frac{5}{27}$ according to the norm in the 3-adics?

Introduction ●○○	<i>p</i> -adic Algorithms	Applications	Summary O
Definitions			

$$\left.\frac{a}{b}\right|_p = p^{v(b)-v(a)}$$

where v(n) is the number of times p divides the integer n.

Example

• Which is "smaller" 162 or $\frac{5}{27}$ according to the norm in the 3-adics?

$$|162|_3 = 3^{-4} < \left|\frac{5}{27}\right|_3 = 3^3.$$

Introduction ●○○	<i>p</i> -adic Algorithms	Applications	Summary O
Definitions			

$$\left.\frac{a}{b}\right|_p = p^{v(b)-v(a)}$$

where v(n) is the number of times p divides the integer n.

Example

۲

• Which is "smaller" 162 or $\frac{5}{27}$ according to the norm in the 3-adics?

$$|162|_3 = 3^{-4} < \left|\frac{5}{27}\right|_3 = 3^3.$$

• Thus, 162 is "smaller" than $\frac{5}{27}$ in the 3-adics.

Introduction	p-adic Algorithms	Applications	Summary
000			

Definition

• An element $\zeta \in \mathbb{Q}_p$ is a power series in the prime p,

$$\zeta = \sum_{j=m}^{\infty} c_j p^j = c_m p^m + c_{m+1} p^{m+1} + c_{m+2} p^{m+2} + \dots$$

where *m* is a (possibly negative) integer and $c_j \in \left\{\frac{1-p}{2}, \dots, \frac{p-1}{2}\right\}$.

< 注 → < 注 → ...

Introduction ○○●	<i>p</i> -adic Algorithms	Applications	Summary O
Example			

What is

 $4 + 3 \cdot 7 + 3 \cdot 7^2 + 3 \cdot 7^3 + \cdots?$

Introduction ○○●	<i>p</i> -adic Algorithms	Applications	Summary O
Example			

What is

$4 + 3 \cdot 7 + 3 \cdot 7^2 + 3 \cdot 7^3 + \cdots?$

Using the geometric series rule naively gives the following,

★ 문 ► ★ 문 ►

Introduction	p-adic Algorithms	Applications	Summary
000			

Example

What is

$$4 + 3 \cdot 7 + 3 \cdot 7^2 + 3 \cdot 7^3 + \cdots?$$

Using the geometric series rule naively gives the following,

$$4 + 3 \cdot 7 + 3 \cdot 7^2 + 3 \cdot 7^3 + \dots = 1 + 3\left(\frac{1}{1 - 7}\right)$$

回 と く ヨ と く ヨ と

Introduction	p-adic Algorithms	Applications	Summary
000			

Example

What is

$$4 + 3 \cdot 7 + 3 \cdot 7^2 + 3 \cdot 7^3 + \cdots$$
?

Using the geometric series rule naively gives the following,

$$4 + 3 \cdot 7 + 3 \cdot 7^2 + 3 \cdot 7^3 + \dots = 1 + 3\left(\frac{1}{1 - 7}\right) = \frac{1}{2}$$

- 170

< ≣ >

< ≣ >

Introduction	<i>p</i> -adic Algorithms	Applications	Summary
	•00		

Theorem

Given any s and $t \in \mathbb{Z}$, there exists uniquely $q \in \mathbb{Z}$ and $r \in \mathbb{Z}$ with 0 < r < t such that

$$s = qt + r$$
.

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction	p-adic Algorithms	Applications	Summary
	•00		

Theorem

Given any s and $t\in\mathbb{Z},$ there exists uniquely $q\in\mathbb{Z}$ and $r\in\mathbb{Z}$ with 0< r< t such that

$$s = qt + r$$
.

Theorem

Given any σ and $\tau \in \mathbb{Q}_p$, there exists uniquely $q \in \mathbb{Q}$ with $|q| < \frac{p}{2}$ and $\eta \in \mathbb{Q}_p$ with $|\eta|_p < |\tau|_p$ such that

$$\sigma = q\tau + \eta.$$

Introduction	p-adic Algorithms	Applications	Summary
	•••		

Theorem

Given any s and $t\in\mathbb{Z},$ there exists uniquely $q\in\mathbb{Z}$ and $r\in\mathbb{Z}$ with 0< r< t such that

$$s = qt + r$$
.

Theorem

Given any σ and $\tau \in \mathbb{Q}_p$, there exists uniquely $q \in \mathbb{Q}$ with $|q| < \frac{p}{2}$ and $\eta \in \mathbb{Q}_p$ with $|\eta|_p < |\tau|_p$ such that

$$\sigma = q\tau + \eta.$$

Example (in the 7-adics)

$$\frac{181625}{11} = \left(\frac{10555}{2}\right)$$

Introduction	p-adic Algorithms	Applications	Summary
	•00		

Theorem

Given any s and $t\in\mathbb{Z},$ there exists uniquely $q\in\mathbb{Z}$ and $r\in\mathbb{Z}$ with 0< r< t such that

$$s = qt + r$$
.

Theorem

Given any σ and $\tau \in \mathbb{Q}_p$, there exists uniquely $q \in \mathbb{Q}$ with $|q| < \frac{p}{2}$ and $\eta \in \mathbb{Q}_p$ with $|\eta|_p < |\tau|_p$ such that

$$\sigma = q\tau + \eta.$$

Example (in the 7-adics)

$$\frac{181625}{11} = (2)\left(\frac{10555}{2}\right) + \left(\frac{9360}{11} \cdot 7^1\right)$$

Introduction	<i>p</i> -adic Algorithms	Applications	Summary
000	000	000000	

The *p*-Adic Euclidean Algorithm applied to σ and $\tau \in \mathbb{Q}_p$ is as follows:

I ► < I ► ►</p>

Introduction	p-adic Algorithms	Applications	Summary
	000		

The *p*-Adic Euclidean Algorithm applied to σ and $\tau \in \mathbb{Q}_p$ is as follows:

$$\sigma = q_1 \tau + \eta_1$$

回 と く ヨ と く ヨ と

Introduction	p-adic Algorithms	Applications	Summary
	000		

The *p*-Adic Euclidean Algorithm applied to σ and $\tau \in \mathbb{Q}_p$ is as follows:

$$\sigma = q_1 \tau + \eta_1$$

$$\tau = q_2 \eta_1 + \eta_2$$

< 🗗 🕨

▲ 문 ▶ | ▲ 문 ▶

Introduction p-	adic Algorithms	Applications	Summary
000 00	•0	000000	

The *p*-Adic Euclidean Algorithm applied to σ and $\tau \in \mathbb{Q}_p$ is as follows:

- $\sigma = q_1 \tau + \eta_1$
- $\tau = q_2\eta_1 + \eta_2$
- $\eta_1 = q_3\eta_2 + \eta_3$

・ 母 と ・ ヨ と ・ ヨ と

Introduction	p-adic Algorithms	Applications	Summary
	000	000000	

The *p*-Adic Euclidean Algorithm applied to σ and $\tau \in \mathbb{Q}_p$ is as follows:

÷

$$\sigma = q_1 \tau + \eta_1$$

$$\tau = q_2 \eta_1 + \eta_2$$

$$\eta_1 = q_3 \eta_2 + \eta_3$$

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

★ 문 → < 문 →</p>

Introduction	p-adic Algorithms	Applications	Summary
000	000	000000	

The *p*-Adic Euclidean Algorithm applied to σ and $\tau \in \mathbb{Q}_p$ is as follows:

$$\sigma = q_1\tau + \eta_1$$

$$\tau = q_2\eta_1 + \eta_2$$

$$\eta_1 = q_3\eta_2 + \eta_3$$

$$\vdots$$

$$\eta_{i-2} = q_i\eta_{i-1} + \eta_i$$

< 🗇 🕨

→ Ξ → < Ξ →</p>

Introduction	p-adic Algorithms	Applications	Summary
000	000	000000	

The *p*-Adic Euclidean Algorithm applied to σ and $\tau \in \mathbb{Q}_p$ is as follows:

 $\sigma = q_1\tau + \eta_1$ $\tau = q_2\eta_1 + \eta_2$ $\eta_1 = q_3\eta_2 + \eta_3$ \vdots $\eta_{i-2} = q_i\eta_{i-1} + \eta_i$ \vdots

A ►

★ E ► < E ►</p>

Introduction	<i>p</i> -adic Algorithms	Applications	Summary
	000		

The *p*-Adic Euclidean Algorithm applied to σ and $\tau \in \mathbb{Q}_p$ is as follows:

$$\sigma = q_1\tau + \eta_1$$

$$\tau = q_2\eta_1 + \eta_2$$

$$\eta_1 = q_3\eta_2 + \eta_3$$

$$\vdots$$

$$\eta_{i-2} = q_i\eta_{i-1} + \eta_i$$

This process either continues indefinitely or stops when $\eta_i = 0$. The outputs of this algorithm are the sequences $\{q_i\}$ and $\{\eta_i\}$.

Introduction	<i>p</i> -adic Algorithms ○○●	Applications	Summary O
Example			

★ E ► ★ E ►

A ■

Introduction	<i>p</i> -adic Algorithms ○○●	Applications	Summary O
F 1			
Example			

$$\frac{181625}{11} = \left(\frac{10555}{2}\right)$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Introduction	<i>p</i> -adic Algorithms ○○●	Applications	Summary O
Example			

The 7-Adic Euclidean Algorithm applied to $\frac{181625}{11}$ and $\frac{10555}{2}$ yields $\frac{181625}{11} = (2) \qquad \left(\frac{10555}{2}\right) + \left(\frac{9360}{11} \cdot 7^{1}\right)$

イロン イ部ン イヨン イヨン 三日

Introduction	<i>p</i> -adic Algorithms ○○●	Applications	Summary O
Example			

$$\frac{181625}{11} = (2) \qquad \left(\frac{10555}{2}\right) + \left(\frac{9360}{11} \cdot 7^{1}\right)$$
$$\frac{10555}{2} = \left(\frac{9360}{11} \cdot 7^{1}\right)$$

・ロン ・四と ・日と ・日と

Introduction	<i>p</i> -adic Algorithms ○○●	Applications	Summary O
Example			

3

< 注▶ < 注▶ -

Introduction	<i>p</i> -adic Algorithms ○○●	Applications	Summary O
Example			

- ∢ ≣ ▶

Introduction	<i>p</i> -adic Algorithms ○○●	Applications	Summary O
Example			

Introduction	<i>p</i> -adic Algorithms ○○●	Applications	Summary O
Evample			

Introduction	<i>p</i> -adic Algorithms ○○●	Applications	Summary O
Example			

Introduction	<i>p</i> -adic Algorithms ○○●	Applications	Summary O
Example			

< ≣ >

Introduction	<i>p</i> -adic Algorithms ○○●	Applications	Summary O
Example			

Introduction	p-adic Algorithms	Applications	Summary
000	000	•00000	

Greatest Common Divisor

Definition

Let a, $b \in \mathbb{Z}$, then the g=(a,b) is the positive integer that satisfies the following properties, (i.) $\frac{a}{g}, \frac{b}{g} \in \mathbb{Z}$ and, (ii.) if there exists f with $\frac{a}{f}, \frac{b}{f} \in \mathbb{Z}$, then $\frac{g}{f} \in \mathbb{Z}$.

Introduction	<i>p</i> -adic Algorithms	Applications	Summary
000	000	•00000	

Greatest Common Divisor

Definition

Let a, $b \in \mathbb{Z}$, then the g=(a,b) is the positive integer that satisfies the following properties, (i.) $\frac{a}{g}, \frac{b}{g} \in \mathbb{Z}$ and, (ii.) if there exists f with $\frac{a}{f}, \frac{b}{f} \in \mathbb{Z}$, then $\frac{g}{f} \in \mathbb{Z}$.

We can extend the definition of the gcd to $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$ by setting

$$\left(\frac{a}{b},\frac{c}{d}\right) = \frac{\gcd(a,c)}{\operatorname{lcm}(b,d)}.$$

Introduction	<i>p</i> -adic Algorithms	Applications	Summary
000	000	•00000	

Greatest Common Divisor

Definition

Let a, $b \in \mathbb{Z}$, then the g=(a,b) is the positive integer that satisfies the following properties, (i.) $\frac{a}{g}, \frac{b}{g} \in \mathbb{Z}$ and, (ii.) if there exists f with $\frac{a}{f}, \frac{b}{f} \in \mathbb{Z}$, then $\frac{g}{f} \in \mathbb{Z}$.

We can extend the definition of the gcd to $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$ by setting

$$\left(\frac{a}{b},\frac{c}{d}\right) = \frac{\gcd(a,c)}{\operatorname{lcm}(b,d)}.$$

Theorem

Let $\sigma, \tau \in \mathbb{Q} \subseteq \mathbb{Q}_p$ with $\sigma = sp^{\nu(\sigma)}$, $\tau = tp^{\nu(\tau)}$. Then the *p*-adic Euclidean Algorithm applied to σ and τ stops after k-steps and if $\eta_i = h_i p^{\epsilon_i}$, then $|h_{k-1}| = \gcd(t, s)$.

Introduction	<i>p</i> -adic Algorithms	Applications	Summary
000		○●○○○○	O
Example			

$\frac{181625}{11}$	=	(2)	$\left(\frac{10555}{2}\right)$	+	$\left(\frac{9360}{11}\cdot7^{1}\right)$
$\frac{10555}{2}$	=	$\left(\frac{12}{7}\right)$	$\left(\frac{\dot{9}360}{11}\cdot7^{1}\right)$	+	$\left(\frac{-2215}{22}\cdot7^2\right)$
$\frac{9360}{11}\cdot 7^1$	=	$\left(\frac{-10}{7}\right)$	$\left(\frac{-2215}{22}\cdot7^2\right)$	+	$\left(\frac{-5}{11}\cdot 7^4\right)^2$
$\frac{-2215}{22}\cdot 7^2$	=	$\left(\frac{50}{7^2}\right)$	$\left(\frac{-5}{11}\cdot7^4\right)^2$	+	$\left(\frac{-5}{22}\cdot7^{5}\right)$
$\frac{-5}{11}\cdot 7^4$	=	$\left(\frac{2}{7}\right)$	$\left(\frac{-5}{22}\cdot7^{5}\right)$	+	0

(ロ) (四) (E) (E) (E)

Introduction	<i>p</i> -adic Algorithms	Applications	Summary
000		○●○○○○	O
Example			

- < ≣ →

-≣->

Introduction	<i>p</i> -adic Algorithms	Applications	Summary
000	000	○○●○○○	O

Classical Simple Continued Fraction

Definition

$$rac{a}{b} = q_1 + rac{1}{q_2 + rac{1}{q_3 + rac{1}{\ddots}}}$$

where q_i are positive integers.

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< ≣⇒

Introduction	<i>p</i> -adic Algorithms	Applications	Summary
000	000	000000	O

Classical Simple Continued Fraction

Definition

$$rac{a}{b} = q_1 + rac{1}{q_2 + rac{1}{q_3 + rac{1}{-1}}}$$

where q_i are positive integers.

Theorem

The q_is are the quotients from the Euclidean Algorithm of a and b.

.

イロト イポト イヨト イヨト

Introductio	on		b-adic A l	gorithms	Applications ○○○●○○	Summary O
				. –		

Definition (Browkin)

For $\zeta \in \mathbb{Q}_p$, $\zeta = b_1 + rac{1}{b_2 + rac{1}{b_3 + rac{1}{\ddots}}}$ where $b_i \in \mathbb{Q}$ with $|b_i| < rac{p}{2}$.

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Introduction	<i>p</i> -adic Algorithms	Applications	Summary O

Definition (Browkin)

For $\zeta \in \mathbb{Q}_p$,

$$\zeta=b_1+rac{1}{b_2+rac{1}{b_3+rac{1}{\ddots}}}$$

where $b_i \in \mathbb{Q}$ with $|b_i| < \frac{p}{2}$.

Browkin's method computes the b_i s through a series of p-adic inverses.

(ロ) (同) (E) (E) (E)

Introduction	p-adic Algorithms	Applications	Summary
000	000	000000	

Example $\frac{72650}{23221} = 2 + \frac{1}{\frac{12}{7} + \frac{1}{\frac{-10}{7} + \frac{1}{\frac{50}{7^2} + \frac{1}{2}}}}$

・ロン ・回と ・ヨン ・ヨン

Introduction	p-adic Algorithms	Applications	Summary
000	000	000000	

Example

$$\frac{72650}{23221} = 2 + \frac{1}{\frac{12}{7} + \frac{1}{\frac{-10}{7} + \frac{1}{\frac{50}{7^2} + \frac{1}{\frac{2}{7}}}}}$$

Theorem

Let $\{q_i\}$ be the outputs of the *p*-adic Euclidean Algorithm applied to σ and τ , then $\frac{\sigma}{\tau} = q_1 + \frac{1}{q_2 + \frac{1}{q_3 + \frac{1}{\ddots}}}$

Introduction	<i>p</i> -adic Algorithms	Applications ○○○○○●	Summary O
Example			
$ \frac{\frac{181625}{11}}{\frac{10555}{2}} \\ \frac{\frac{9360}{11}}{\frac{-2215}{2}} \cdot 7^{1} \\ \frac{-2215}{22} \cdot 7^{2} \\ \frac{-5}{11} \cdot 7^{4} $	$= (2)$ $= \left(\frac{12}{7}\right)$ $= \left(\frac{-10}{7}\right)$ $= \left(\frac{50}{7^2}\right)$ $= \left(\frac{2}{7}\right)$	$ \begin{pmatrix} \frac{10555}{2} \\ \frac{9360}{11} \cdot 7^1 \end{pmatrix} + \begin{pmatrix} \frac{9360}{11} \cdot 7^1 \\ \frac{9360}{11} \cdot 7^1 \end{pmatrix} + \begin{pmatrix} \frac{-2215}{22} \cdot 7^2 \\ \frac{-2215}{22} \cdot 7^2 \end{pmatrix} + \begin{pmatrix} \frac{-5}{11} \cdot 7^4 \\ \frac{-5}{11} \cdot 7^4 \end{pmatrix} + \begin{pmatrix} \frac{-5}{22} \cdot 7^5 \\ \frac{-5}{22} \cdot 7^5 \end{pmatrix} + 0 $)

・ロン ・回 と ・ ヨン ・ ヨン

Introduction	<i>p</i> -adic Algorithms	Applications	Summary ●
Summary			

・ロン ・四と ・ヨン ・ヨ

Introduction	<i>p</i> -adic Algorithms	Applications	Summary ●
Summary			

• We defined a *p*-adic Division Algorithm and a *p*-adic Euclidean Algorithm.

A ►

< 注→ < 注→

Introduction	<i>p</i> -adic Algorithms	Applications	Summary ●
Summary			

- We defined a *p*-adic Division Algorithm and a *p*-adic Euclidean Algorithm.
- The *p*-adic Eulcidean Algorithm computes a generalized gcd along with a finite simple continued fraction.

Introduction	<i>p</i> -adic Algorithms	Applications	Summary ●
Summary			

- We defined a *p*-adic Division Algorithm and a *p*-adic Euclidean Algorithm.
- The *p*-adic Eulcidean Algorithm computes a generalized gcd along with a finite simple continued fraction.
- In conclusion, the *p*-adic Euclidean Algorithm is computationally easier than Browkin's method that uses *p*-adic inverses, but mathematically the two methods are the same.

Introduction	<i>p</i> -adic Algorithms	Applications	Summary ●
Summary			

- We defined a *p*-adic Division Algorithm and a *p*-adic Euclidean Algorithm.
- The *p*-adic Eulcidean Algorithm computes a generalized gcd along with a finite simple continued fraction.
- In conclusion, the *p*-adic Euclidean Algorithm is computationally easier than Browkin's method that uses *p*-adic inverses, but mathematically the two methods are the same.
- Finally, I would like to give a special thank you to Dr. Eric Errthum for begin my mentor throughout this project.

Introduction	<i>p</i> -adic Algorithms	Applications	Summary ●
Summary			

- We defined a *p*-adic Division Algorithm and a *p*-adic Euclidean Algorithm.
- The *p*-adic Eulcidean Algorithm computes a generalized gcd along with a finite simple continued fraction.
- In conclusion, the *p*-adic Euclidean Algorithm is computationally easier than Browkin's method that uses *p*-adic inverses, but mathematically the two methods are the same.
- Finally, I would like to give a special thank you to Dr. Eric Errthum for begin my mentor throughout this project.
- Questions?