A p-adic Euclidean Algorithm

Cortney Lager
Winona State University

April 25, 2009

Definitions

- For each prime p, there exists a norm $|\cdot|_{p}$ defined by

$$
\left|\frac{a}{b}\right|_{p}=p^{v(b)-v(a)}
$$

where $v(n)$ is the number of times p divides the integer n.

Definitions

- For each prime p, there exists a norm $|\cdot|_{p}$ defined by

$$
\left|\frac{a}{b}\right|_{p}=p^{v(b)-v(a)}
$$

where $v(n)$ is the number of times p divides the integer n.

Example

Definitions

- For each prime p, there exists a norm $|\cdot|_{p}$ defined by

$$
\left|\frac{a}{b}\right|_{p}=p^{v(b)-v(a)}
$$

where $v(n)$ is the number of times p divides the integer n.

Example

- Which is "smaller" 162 or $\frac{5}{27}$ according to the norm in the 3-adics?

Definitions

- For each prime p, there exists a norm $|\cdot|_{p}$ defined by

$$
\left|\frac{a}{b}\right|_{p}=p^{v(b)-v(a)}
$$

where $v(n)$ is the number of times p divides the integer n.

Example

- Which is "smaller" 162 or $\frac{5}{27}$ according to the norm in the 3-adics?
-

$$
|162|_{3}=3^{-4}<\left|\frac{5}{27}\right|_{3}=3^{3}
$$

Definitions

- For each prime p, there exists a norm $|\cdot|_{p}$ defined by

$$
\left|\frac{a}{b}\right|_{p}=p^{v(b)-v(a)}
$$

where $v(n)$ is the number of times p divides the integer n.

Example

- Which is "smaller" 162 or $\frac{5}{27}$ according to the norm in the 3-adics?
-

$$
|162|_{3}=3^{-4}<\left|\frac{5}{27}\right|_{3}=3^{3} .
$$

- Thus, 162 is "smaller" than $\frac{5}{27}$ in the 3 -adics.

Definition

- An element $\zeta \in \mathbb{Q}_{p}$ is a power series in the prime p,

$$
\zeta=\sum_{j=m}^{\infty} c_{j} p^{j}=c_{m} p^{m}+c_{m+1} p^{m+1}+c_{m+2} p^{m+2}+\ldots
$$

where m is a (possibly negative) integer and $c_{j} \in\left\{\frac{1-p}{2}, \ldots, \frac{p-1}{2}\right\}$.

Example

What is

$$
4+3 \cdot 7+3 \cdot 7^{2}+3 \cdot 7^{3}+\cdots ?
$$

Example

What is

$$
4+3 \cdot 7+3 \cdot 7^{2}+3 \cdot 7^{3}+\cdots ?
$$

Using the geometric series rule naively gives the following,

Example

What is

$$
4+3 \cdot 7+3 \cdot 7^{2}+3 \cdot 7^{3}+\cdots ?
$$

Using the geometric series rule naively gives the following,

$$
4+3 \cdot 7+3 \cdot 7^{2}+3 \cdot 7^{3}+\cdots=1+3\left(\frac{1}{1-7}\right)
$$

Example

What is

$$
4+3 \cdot 7+3 \cdot 7^{2}+3 \cdot 7^{3}+\cdots ?
$$

Using the geometric series rule naively gives the following,

$$
4+3 \cdot 7+3 \cdot 7^{2}+3 \cdot 7^{3}+\cdots=1+3\left(\frac{1}{1-7}\right)=\frac{1}{2} .
$$

p-adic Divison Algorithm

Theorem

Given any s and $t \in \mathbb{Z}$, there exists uniquely $q \in \mathbb{Z}$ and $r \in \mathbb{Z}$ with $0<r<t$ such that

$$
s=q t+r .
$$

p-adic Divison Algorithm

Theorem

Given any s and $t \in \mathbb{Z}$, there exists uniquely $q \in \mathbb{Z}$ and $r \in \mathbb{Z}$ with $0<r<t$ such that

$$
s=q t+r .
$$

Theorem

Given any σ and $\tau \in \mathbb{Q}_{p}$, there exists uniquely $q \in \mathbb{Q}$ with $|q|<\frac{p}{2}$ and $\eta \in \mathbb{Q}_{p}$ with $|\eta|_{p}<|\tau|_{p}$ such that

$$
\sigma=q \tau+\eta
$$

p-adic Divison Algorithm

Theorem

Given any s and $t \in \mathbb{Z}$, there exists uniquely $q \in \mathbb{Z}$ and $r \in \mathbb{Z}$ with $0<r<t$ such that

$$
s=q t+r .
$$

Theorem

Given any σ and $\tau \in \mathbb{Q}_{p}$, there exists uniquely $q \in \mathbb{Q}$ with $|q|<\frac{p}{2}$ and $\eta \in \mathbb{Q}_{p}$ with $|\eta|_{p}<|\tau|_{p}$ such that

$$
\sigma=q \tau+\eta
$$

Example (in the 7-adics)

$$
\frac{181625}{11}=\left(\frac{10555}{2}\right)
$$

p-adic Divison Algorithm

Theorem

Given any s and $t \in \mathbb{Z}$, there exists uniquely $q \in \mathbb{Z}$ and $r \in \mathbb{Z}$ with $0<r<t$ such that

$$
s=q t+r .
$$

Theorem

Given any σ and $\tau \in \mathbb{Q}_{p}$, there exists uniquely $q \in \mathbb{Q}$ with $|q|<\frac{p}{2}$ and $\eta \in \mathbb{Q}_{p}$ with $|\eta|_{p}<|\tau|_{p}$ such that

$$
\sigma=q \tau+\eta
$$

Example (in the 7-adics)

$$
\frac{181625}{11}=(2)\left(\frac{10555}{2}\right)+\left(\frac{9360}{11} \cdot 7^{1}\right)
$$

p-adic Euclidean Algorithm

The p-Adic Euclidean Algorithm applied to σ and $\tau \in \mathbb{Q}_{p}$ is as follows:

p-adic Euclidean Algorithm

The p-Adic Euclidean Algorithm applied to σ and $\tau \in \mathbb{Q}_{p}$ is as follows:

$$
\sigma=q_{1} \tau+\eta_{1}
$$

p-adic Euclidean Algorithm

The p-Adic Euclidean Algorithm applied to σ and $\tau \in \mathbb{Q}_{p}$ is as follows:

$$
\begin{aligned}
\sigma & =q_{1} \tau+\eta_{1} \\
\tau & =q_{2} \eta_{1}+\eta_{2}
\end{aligned}
$$

p-adic Euclidean Algorithm

The p-Adic Euclidean Algorithm applied to σ and $\tau \in \mathbb{Q}_{p}$ is as follows:

$$
\begin{aligned}
\sigma & =q_{1} \tau+\eta_{1} \\
\tau & =q_{2} \eta_{1}+\eta_{2} \\
\eta_{1} & =q_{3} \eta_{2}+\eta_{3}
\end{aligned}
$$

p-adic Euclidean Algorithm

The p-Adic Euclidean Algorithm applied to σ and $\tau \in \mathbb{Q}_{p}$ is as follows:

$$
\begin{aligned}
\sigma & =q_{1} \tau+\eta_{1} \\
\tau & =q_{2} \eta_{1}+\eta_{2} \\
\eta_{1} & =q_{3} \eta_{2}+\eta_{3}
\end{aligned}
$$

p-adic Euclidean Algorithm

The p-Adic Euclidean Algorithm applied to σ and $\tau \in \mathbb{Q}_{p}$ is as follows:

$$
\begin{aligned}
\sigma & =q_{1} \tau+\eta_{1} \\
\tau & =q_{2} \eta_{1}+\eta_{2} \\
\eta_{1} & =q_{3} \eta_{2}+\eta_{3} \\
& \vdots \\
\eta_{i-2} & =q_{i} \eta_{i-1}+\eta_{i}
\end{aligned}
$$

p-adic Euclidean Algorithm

The p-Adic Euclidean Algorithm applied to σ and $\tau \in \mathbb{Q}_{p}$ is as follows:

$$
\begin{aligned}
\sigma & =q_{1} \tau+\eta_{1} \\
\tau & =q_{2} \eta_{1}+\eta_{2} \\
\eta_{1} & =q_{3} \eta_{2}+\eta_{3} \\
& \vdots \\
\eta_{i-2} & =q_{i} \eta_{i-1}+\eta_{i}
\end{aligned}
$$

p-adic Euclidean Algorithm

The p-Adic Euclidean Algorithm applied to σ and $\tau \in \mathbb{Q}_{p}$ is as follows:

$$
\begin{aligned}
\sigma & =q_{1} \tau+\eta_{1} \\
\tau & =q_{2} \eta_{1}+\eta_{2} \\
\eta_{1} & =q_{3} \eta_{2}+\eta_{3} \\
& \vdots \\
\eta_{i-2} & =q_{i} \eta_{i-1}+\eta_{i}
\end{aligned}
$$

This process either continues indefinitely or stops when $\eta_{i}=0$. The outputs of this algorithm are the sequences $\left\{q_{i}\right\}$ and $\left\{\eta_{i}\right\}$.

Example

The 7-Adic Euclidean Algorithm applied to $\frac{181625}{11}$ and $\frac{10555}{2}$ yields

Example

The 7-Adic Euclidean Algorithm applied to $\frac{181625}{11}$ and $\frac{10555}{2}$ yields
$\frac{181625}{11} \quad\left(\frac{10555}{2}\right)$

Example

The 7-Adic Euclidean Algorithm applied to $\frac{181625}{11}$ and $\frac{10555}{2}$ yields
$\frac{181625}{11}=(2) \quad\left(\frac{10555}{2}\right)+\left(\frac{9360}{11} \cdot 7^{1}\right)$

Example

The 7-Adic Euclidean Algorithm applied to $\frac{181625}{11}$ and $\frac{10555}{2}$ yields

$\frac{181625}{11}$	$=\quad(2) \quad\left(\frac{10555}{2}\right)$	$+\left(\frac{9360}{11} \cdot 7^{1}\right)$
$\frac{10555}{2}$	$=$	$\left(\frac{9360}{11} \cdot 7^{1}\right)$

Example

The 7-Adic Euclidean Algorithm applied to $\frac{181625}{11}$ and $\frac{10555}{2}$ yields

$\frac{181625}{11}$	$=(2) \quad\left(\frac{10555}{2}\right)$
$\frac{10555}{2}$	$=\left(\frac{12}{7}\right) \quad\left(\frac{9360}{11} \cdot 7^{1}\right)+\left(\frac{9360}{11} \cdot 7^{1}\right)$
22	$\left.+7^{2}\right)$

Example

The 7-Adic Euclidean Algorithm applied to $\frac{181625}{11}$ and $\frac{10555}{2}$ yields

$$
\begin{aligned}
& \frac{181625}{11}=(2) \\
& \frac{10555}{2}=\left(\frac{10555}{2}\right) \\
&\left.\frac{93}{7}\right)\left(\frac{9360}{11} \cdot 7^{1}\right)+\left(\frac{9360}{11} \cdot 7^{1}\right) \\
& \frac{9360}{11} \cdot 7^{1}= \\
&\left(\frac{-2215}{22} \cdot 7^{2}\right)
\end{aligned}
$$

Example

The 7-Adic Euclidean Algorithm applied to $\frac{181625}{11}$ and $\frac{10555}{2}$ yields

$$
\begin{array}{ll}
\frac{181625}{11} & =(2) \quad\left(\frac{10555}{2}\right) \\
\frac{10555}{2} & =\left(\frac{12}{7}\right) \\
\frac{9360}{11} \cdot 7^{1} & =\left(\frac{9360}{11} \cdot 7^{1}\right) \\
\left.\frac{-10}{7}\right) & \left.+\left(\frac{-2215}{22} \cdot 7^{2}\right)+7^{2}\right)
\end{array}
$$

Example

The 7-Adic Euclidean Algorithm applied to $\frac{181625}{11}$ and $\frac{10555}{2}$ yields

$$
\begin{gathered}
\frac{181625}{11} \\
=(2) \\
\frac{10555}{2} \\
=\left(\frac{12}{7}\right) \quad\left(\frac{10555}{2}\right)+\left(\frac{9360}{11} \cdot 7^{1}\right)+\left(\frac{-2215}{22} \cdot 7^{1}\right) \\
\frac{9360}{11} \cdot 7^{1}=\left(\frac{-10}{7}\right)\left(\frac{-2215}{22} \cdot 7^{2}\right)+\left(\frac{-5}{11} \cdot 7^{4}\right) \\
\frac{-2215}{22} \cdot 7^{2}= \\
\left(\frac{-5}{11} \cdot 7^{4}\right)
\end{gathered}
$$

Example

The 7-Adic Euclidean Algorithm applied to $\frac{181625}{11}$ and $\frac{10555}{2}$ yields

$$
\begin{array}{ll}
\frac{181625}{11} & =(2) \\
\frac{10555}{2} & =\left(\frac{12}{7}\right) \quad\left(\frac{9355}{2}\right) \\
\left.\frac{9360}{11} \cdot 7^{1}\right) & +\left(\frac{9360}{11} \cdot 7^{1}\right) \\
\frac{9360}{11} \cdot 7^{1} & =\left(\frac{-10}{7}\right) \quad\left(\frac{-2215}{22} \cdot 7^{2}\right) \\
\left.\frac{-2215}{22} \cdot 7^{2}\right) & +\left(\frac{-5}{11} \cdot 7^{4}\right) \\
\left.7^{2}\right) & \left(\frac{-5}{11} \cdot 7^{4}\right)+\left(\frac{-5}{22} \cdot 7^{5}\right)
\end{array}
$$

Example

The 7-Adic Euclidean Algorithm applied to $\frac{181625}{11}$ and $\frac{10555}{2}$ yields

$$
\begin{aligned}
& \frac{181625}{11}=(2) \\
& \frac{10555}{2}=\left(\frac{12}{7}\right) \\
& \frac{9360}{2} \cdot 7^{1}=\left(\frac{-10}{7}\right) \\
&\left.\frac{9360}{11} \cdot 7^{1}\right)+\left(\frac{-2215}{22} \cdot 7^{2}\right)+\left(\frac{9360}{11} \cdot 7^{1}\right) \\
&\left.\frac{-2215}{22} \cdot 7^{2}\right) \\
& \frac{-5}{11} \cdot 7^{4}=\left(\frac{50}{7^{2}}\right) \quad\left(\frac{-5}{11} \cdot 7^{4}\right) \\
&=\left(\frac{-5}{11} \cdot 7^{4}\right)+\left(\frac{-5}{22} \cdot 7^{5}\right)
\end{aligned}
$$

Example

The 7-Adic Euclidean Algorithm applied to $\frac{181625}{11}$ and $\frac{10555}{2}$ yields

$$
\begin{array}{cccc}
\frac{181625}{11} & =(2) & \left(\frac{10555}{2}\right) & +\left(\frac{9360}{11} \cdot 7^{1}\right) \\
\frac{10555}{2} & =\left(\frac{12}{7}\right) & \left(\frac{9360}{11} \cdot 7^{1}\right) & +\left(\frac{-2215}{22} \cdot 7^{2}\right) \\
\frac{9360}{11} \cdot 7^{1} & =\left(\frac{-10}{7}\right) & \left(\frac{-2215}{22} \cdot 7^{2}\right) & +\left(\frac{-5}{11} \cdot 7^{4}\right) \\
\frac{-2215}{22} \cdot 7^{2} & =\left(\frac{50}{7^{2}}\right) & \left(\frac{-5}{11} \cdot 7^{4}\right) & +\left(\frac{-5}{22} \cdot 7^{5}\right) \\
\frac{-5}{11} \cdot 7^{4} & =\left(\frac{2}{7}\right) & \left(\frac{-5}{22} \cdot 7^{5}\right) & + \\
0
\end{array}
$$

Greatest Common Divisor

Definition

Let $a, b \in \mathbb{Z}$, then the $g=(a, b)$ is the positive integer that satisfies the following properties,
(i.) $\frac{a}{g}, \frac{b}{g} \in \mathbb{Z}$ and,
(ii.) if there exists f with $\frac{a}{f}, \frac{b}{f} \in \mathbb{Z}$, then $\frac{g}{f} \in \mathbb{Z}$.

Greatest Common Divisor

Definition

Let $a, b \in \mathbb{Z}$, then the $g=(a, b)$ is the positive integer that satisfies the following properties,
(i.) $\frac{a}{g}, \frac{b}{g} \in \mathbb{Z}$ and,
(ii.) if there exists f with $\frac{a}{f}, \frac{b}{f} \in \mathbb{Z}$, then $\frac{g}{f} \in \mathbb{Z}$.

We can extend the definition of the gcd to $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$ by setting

$$
\left(\frac{a}{b}, \frac{c}{d}\right)=\frac{\operatorname{gcd}(a, c)}{\operatorname{lcm}(b, d)}
$$

Greatest Common Divisor

Definition

Let $a, b \in \mathbb{Z}$, then the $g=(a, b)$ is the positive integer that satisfies the following properties,
(i.) $\frac{a}{g}, \frac{b}{g} \in \mathbb{Z}$ and,
(ii.) if there exists f with $\frac{a}{f}, \frac{b}{f} \in \mathbb{Z}$, then $\frac{g}{f} \in \mathbb{Z}$.

We can extend the definition of the gcd to $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$ by setting

$$
\left(\frac{a}{b}, \frac{c}{d}\right)=\frac{\operatorname{gcd}(a, c)}{\operatorname{lcm}(b, d)}
$$

Theorem

Let $\sigma, \tau \in \mathbb{Q} \subseteq \mathbb{Q}_{p}$ with $\sigma=s p^{v(\sigma)}, \tau=t p^{v(\tau)}$. Then the p-adic Euclidean Algorithm applied to σ and τ stops after k-steps and if $\eta_{i}=h_{i} p^{\epsilon_{i}}$, then $\left|h_{k-1}\right|=\operatorname{gcd}(t, s)$.

Example

$$
\begin{array}{cccc}
\frac{181625}{11} & =(2) & \left(\frac{10555}{2}\right) & +\left(\frac{9360}{11} \cdot 7^{1}\right) \\
\frac{10555}{2} & =\left(\frac{12}{7}\right) & \left(\frac{9360}{11} \cdot 7^{1}\right) & +\left(\frac{-2215}{22} \cdot 7^{2}\right) \\
\frac{9360}{11} \cdot 7^{1} & =\left(\frac{-10}{7}\right) & \left(\frac{-2215}{22} \cdot 7^{2}\right) & +\left(\frac{-5}{11} \cdot 7^{4}\right) \\
\frac{-2215}{22} \cdot 7^{2} & =\left(\frac{50}{7^{2}}\right) & \left(\frac{-5}{11} \cdot 7^{4}\right) & +\left(\frac{-5}{22} \cdot 7^{5}\right) \\
\frac{-5}{11} \cdot 7^{4} & =\left(\frac{2}{7}\right) & \left(\frac{-5}{22} \cdot 7^{5}\right) & + \\
0
\end{array}
$$

Example

$$
\begin{aligned}
\frac{181625}{11} & =(2) \quad\left(\frac{10555}{2}\right)+\left(\frac{9360}{11} \cdot 7^{1}\right) \\
\frac{10555}{2} & =\left(\frac{12}{7}\right) \quad\left(\frac{9360}{11} \cdot 7^{1}\right)+\left(\frac{-2215}{22} \cdot 7^{2}\right) \\
\frac{9360}{11} \cdot 7^{1} & =\left(\frac{-10}{7}\right) \quad\left(\frac{-2215}{22} \cdot 7^{2}\right)+\left(\frac{-5}{11} \cdot 7^{4}\right) \\
\frac{-2215}{22} \cdot 7^{2} & =\left(\frac{50}{7^{2}}\right) \quad\left(\frac{-5}{11} \cdot 7^{4}\right)+\left(\frac{-5}{22} \cdot 7^{5}\right) \\
\frac{-5}{11} \cdot 7^{4} & =\left(\frac{2}{7}\right) \quad\left(\frac{-5}{22} \cdot 7^{5}\right)+ \\
& \Rightarrow \operatorname{gcd}\left(\frac{181625}{11}, \frac{10555}{2}\right)=\frac{5}{22} .
\end{aligned}
$$

Classical Simple Continued Fraction

Definition

$$
\frac{a}{b}=q_{1}+\frac{1}{q_{2}+\frac{1}{q_{3}+\frac{1}{\ddots}}}
$$

where q_{i} are positive integers.

Classical Simple Continued Fraction

Definition

$$
\frac{a}{b}=q_{1}+\frac{1}{q_{2}+\frac{1}{q_{3}+\frac{1}{\ddots}}}
$$

where q_{i} are positive integers.

Theorem

The $q_{i} s$ are the quotients from the Euclidean Algorithm of a and b.

p-adic Simple Continued Fraction

Definition (Browkin)

For $\zeta \in \mathbb{Q}_{p}$,

$$
\zeta=b_{1}+\frac{1}{b_{2}+\frac{1}{b_{3}+\frac{1}{\ddots}}}
$$

where $b_{i} \in \mathbb{Q}$ with $\left|b_{i}\right|<\frac{p}{2}$.

p-adic Simple Continued Fraction

Definition (Browkin)

For $\zeta \in \mathbb{Q}_{p}$,

$$
\zeta=b_{1}+\frac{1}{b_{2}+\frac{1}{b_{3}+\frac{1}{\ddots}}}
$$

where $b_{i} \in \mathbb{Q}$ with $\left|b_{i}\right|<\frac{p}{2}$.
Browkin's method computes the $b_{i} s$ through a series of p-adic inverses.

p-adic Simple Continued Fraction

Example

$$
\frac{72650}{23221}=2+\frac{1}{\frac{12}{7}+\frac{1}{\frac{-10}{7}+\frac{1}{\frac{50}{7^{2}}+\frac{1}{2}}}}
$$

p-adic Simple Continued Fraction

Example

$$
\frac{72650}{23221}=2+\frac{1}{\frac{12}{7}+\frac{1}{\frac{-10}{7}+\frac{1}{\frac{50}{7^{2}}+\frac{1}{\frac{2}{7}}}}}
$$

Theorem

Let $\left\{q_{i}\right\}$ be the outputs of the p-adic Euclidean Algorithm applied to σ and τ, then $\frac{\sigma}{\tau}=q_{1}+\frac{1}{q_{2}+\frac{1}{q_{3}+\frac{1}{2}}}$

Example

$$
\begin{array}{cccc}
\frac{181625}{11} & =(2) & \left(\frac{10555}{2}\right) & +\left(\frac{9360}{11} \cdot 7^{1}\right) \\
\frac{10555}{2} & =\left(\frac{12}{7}\right) & \left(\frac{9360}{11} \cdot 7^{1}\right) & +\left(\frac{-2215}{22} \cdot 7^{2}\right) \tag{2}\\
\frac{9360}{11} \cdot 7^{1} & =\left(\frac{-10}{7}\right) & \left(\frac{-2215}{22} \cdot 7^{2}\right) & +\left(\frac{-5}{11} \cdot 7^{4}\right) \\
\frac{-2215}{22} \cdot 7^{2} & =\left(\frac{50}{7^{2}}\right) \quad\left(\frac{-5}{11} \cdot 7^{4}\right)+\left(\frac{-5}{22} \cdot 7^{5}\right) \\
\frac{-5}{11} \cdot 7^{4} & =\left(\frac{2}{7}\right) \quad\left(\frac{-5}{22} \cdot 7^{5}\right)+ & 0
\end{array}
$$

Example

$$
\begin{aligned}
& 181625 \\
& \begin{array}{c}
\frac{11}{10555} \\
\hline 2
\end{array} \\
& =\quad(2) \\
& =\left(\frac{12}{7}\right) \quad\left(\frac{9360}{11} \cdot 7^{1}\right) \\
& \begin{array}{c}
\frac{9360}{11} \cdot 7^{1}=\left(\frac{-10}{7}\right) \\
\frac{-2215}{22} \cdot 7^{2}=\left(\frac{-2215}{22} \cdot 7^{2}\right)+\left(\begin{array}{c}
\left(\frac{-5}{11} \cdot 7^{4}\right) \\
\frac{-5}{11} \cdot 7^{4}
\end{array}=\left(\begin{array}{c}
\left.\frac{-5}{11} \cdot 7^{4}\right)
\end{array}\right) \quad\left(\frac{-5}{22} \cdot 7^{5}\right)\right.
\end{array} \\
& \frac{\frac{181625}{11}}{\frac{10555}{2}}= \\
& 2+\frac{1}{\frac{12}{7}+\frac{1}{\frac{-10}{7}+\frac{1}{\frac{50}{7^{2}}+\frac{1}{2 / 7}}}}
\end{aligned}
$$

Example

$$
\left.\begin{array}{rl}
\frac{181625}{11} & =(2) \\
\frac{10555}{2} & =\left(\frac{10555}{2}\right) \\
\left.\frac{12}{7}\right) & +\left(\frac{9360}{11} \cdot 7^{1}\right) \\
\frac{9360}{11} \cdot 7^{1} & =\left(\frac{-10}{7}\right) \\
\left.\frac{-2215}{11} \cdot 7^{1}\right) \\
\frac{-2215}{22} \cdot 7^{2} & =\left(\frac{-2215}{22} \cdot 7^{2}\right) \\
\left.\frac{-5}{7^{2}}\right) & +\left(\frac{-5}{11} \cdot 7^{4}\right) \\
\frac{-5}{11} \cdot 7^{4} & \left.=\left(\frac{2}{7}\right) \quad\left(\frac{-5}{11} \cdot 7^{4}\right)+\left(\frac{-5}{22} \cdot 7^{5}\right)+7^{5}\right) \\
\frac{\frac{181625}{115}}{\frac{1055}{2}} & =\frac{72650}{23221}
\end{array}\right)=2+\frac{1}{\frac{12}{7}+\frac{1}{\frac{-10}{7}+\frac{1}{\frac{50}{7^{2}}+\frac{1}{2 / 7}}}}
$$

Summary

Summary

- We defined a p-adic Division Algorithm and a p-adic Euclidean Algorithm.

Summary

- We defined a p-adic Division Algorithm and a p-adic Euclidean Algorithm.
- The p-adic Eulcidean Algorithm computes a generalized gcd along with a finite simple continued fraction.

Summary

- We defined a p-adic Division Algorithm and a p-adic Euclidean Algorithm.
- The p-adic Eulcidean Algorithm computes a generalized gcd along with a finite simple continued fraction.
- In conclusion, the p-adic Euclidean Algorithm is computationally easier than Browkin's method that uses p-adic inverses, but mathematically the two methods are the same.

Summary

- We defined a p-adic Division Algorithm and a p-adic Euclidean Algorithm.
- The p-adic Eulcidean Algorithm computes a generalized gcd along with a finite simple continued fraction.
- In conclusion, the p-adic Euclidean Algorithm is computationally easier than Browkin's method that uses p-adic inverses, but mathematically the two methods are the same.
- Finally, I would like to give a special thank you to Dr. Eric Errthum for begin my mentor throughout this project.

Summary

- We defined a p-adic Division Algorithm and a p-adic Euclidean Algorithm.
- The p-adic Eulcidean Algorithm computes a generalized gcd along with a finite simple continued fraction.
- In conclusion, the p-adic Euclidean Algorithm is computationally easier than Browkin's method that uses p-adic inverses, but mathematically the two methods are the same.
- Finally, I would like to give a special thank you to Dr. Eric Errthum for begin my mentor throughout this project.
- Questions?

